
3

SOFTWARE ENGINEERING LABORATORY SERIES

CR-189410

SEL-_ltdl)g_

AN OVERVIEW OF
THE SOFTWARE ENGINEERING

LABORATORY

DECEMBER 1994

(_ASA-CR-}.8_410) AP_ C'VE_V[_M CF
THE SCFTNAKE ENGINEERING LARC_ATGR¥

(I_ASA. Coddard Sp_ce Flight Center)

64 p
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

N95-28714

Unc I as

G3/61 0053149

.= -

m n

SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-005

AN OVERVIEW OF
THE SOFTWARE ENGINEERING

LABORATORY

DECEMBER 1994

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Foreword

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC) and created to investigate the effectiveness of software

engineering technologies when applied to the development of applications software. The SEL was created in 1976
and has three primary organizational members:

NASA/GSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (I) to understand the software development process in the GSFC environment; (2) to

measure the effect of various methodologies, tools, and models on the process; and (3) to identify and then to apply
successful development practices. The activities, findings, and recommendations of the SEL are recorded in the

Software Engineering Laboratory Series, a continuing series of reports that includes this document.

The major contributors to this document are

Frank McGarry and Rose Pajerski, NASA/Goddard Space Flight Center

Gerald Page and Sharon Waligora, Computer Sciences Corporation

Victor Basili and Marvin Zelkowitz, University of Maryland

The SEL is accessible on the World Wide Web at

http://groucho.gsfc.nasa.gov/Code_550/S EL_hp.html

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

__ P_C_t_ BX.3_NK:,N{_T FI_.MED iii

°f

SEL-94-005

P ._ ,, l,_j-,-.......... F_-NTfOr.,iALLY BLAt_K

Abstract

This report describes the background and structure of the SEL organization, the SEL process improvement approach,
and its experimentation and data collection process. Results of some sample SEL studies are included, it includes

a discussion of the overall implication of trends observed over 17 years of process improvement efforts and looks at

the return on investment based on a comparison of the total investment in process improvement with the measurable
improvements seen in the organization's software product.

v _I SEL-94-005

Contents

Foreword .. i i i

Abstract ... v

Introduction ... I

Section i. Background .. 3

1.1 SEL History ... 3

1.2 SEL Process Improvement Strategy .. 3

Section 2. The SEL Organization .. 7

2.1 Software Development/Maintenance .. 8

2.2 Process/Product Analysis .. 8

2.3 Data Base Support ... 9

Section 3. The SEL Process Improvement Concept .. ! !

3.1 Bottom-Up Improvement .. II

3.2 Measurement .. 12

3.3 Reuse of Experience ... 12

Section 4. SEL Experimentation and Analysis ... 13

4. ! Defining Experiments .. 13

4.2 Collecting Measures .. 14

4.3 Analyzing Data ... 14

4.4 Improving Process ... 18

Section 5. SEL Experiences: Understanding, Assessing, and Packaging .. 21

5. I Understanding .. 2 I

5.2 Assessing .. 26

5.2. ! Studies of Design Approaches .. 26

5.2.2 Studies of Testing .. 27

5.2.3 Studies with Cleanroom .. 29

5.2.4 Studies with Ada and OOD ... 30

5.2.5 Studies with Independent Verification and Validation (IV&V) .. 33

5.2.6 Additional Studies ... 36

5.3 Packaging .. 36

5.3. l Interim Packages .. 36

5.3.2 Technology Reports ... 36

5.3.3 Standards, Tools, and Training ... 37

Section 6. The SEL Impact .. 39

6.1 Cost of Change ... 39

6.2 Impact on Product ... 39

6.3 Impact on Process ... 43

vii SEL-94-005

AppendixA - Sample SEL Experiment Plan .. 45

References .. 47

Standard Bibliography of SEL Literature ... 49

SEL-94-005 viii

Illustrations

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Figures

The SEE Process Improvement Paradigm .. 4

SEL Structure ... 7

Effort Data Collection Form .. 15

Defect/Change Data Collection Form .. 16

SEL Core Measures ... 17

Effort Distribution by Phase and Activity .. 22

SEL Error Characteristics -.. 23

Error Detection Rate Model ... 24

Fault Rate for Classes of Module Strength ... 27

Fault Detection Rate by Testing Method ... 28

Cost of Fault Detection by Testing Method ... 29

Results of Cleanroom Experiment .. 30

Assessing Cleanroom Against Goals and Expectations ... 31

SEL Ada/OOT Projects .. 32

Maturing Use of Ada ... 33

Reuse Shortened Project Duration .. 34

A Look at IV&V Methodology .. 35

Impact on SEL Products (Reliability) ... 42

Impact on SEL Products (Cost) ... 42

Impact on SEL Products (Reuse) .. 43

Development Error Rates (1977-1994) ... 44

Tables

Focus of SEL Organizational Components ... 8

SEL Baseline (1985-1990) .. 21

Initial SEL Models/Relations .. 25

More Recent SEL Software Characteristics (late 1980s) .. 25

Early SEL Baseline (1985-1989) .. 40

Current SEL Baseline (1990-1993) ... 41

ix SEL-94-005

Introduction

Since its inception, the Software Engineering Laboratory (SEL) has conducted experiments on approximately 120

Flight Dynamics Division (FDD) production software projects at NASA/Goddard Space Flight Center (GSFC), in
which numerous software process changes have been applied, measured, and analyzed. As a result of these studies,

appropriate processes have been adopted and tailored within the environment, which has guided the SEL to

significantly improve the software generated. Through experimentation and sustained study of software process and

its resultant product, the SEL has been able to identify refinements to its software process and to improve product

characteristics based on FDD goals and experience. This effort has been driven throughout by the goals of achieving
significant overall improvement in three product measures:

• Reduction in defect rate of delivered software

• Reduction in cost of software to support similar missions

• Reduction in average cycle time to produce mission support software

The continual experimentation with software process has yielded an extensive set of empirical studies that has

guided the evolution of standards, management practices, technologies, and training within the organization.

Additionally, the SEL has produced over 200 reports that describe experiences from the experimentation process and
its overall software process improvement approach.

1 SEL-94-005

Section 1. Background

1.1 SEL History

The SEL was created in 1976 at NASA/GSFC for the

purpose of understanding and improving the overall

software process and products that were being created
within the FDD. A partnership was formed between

NASA/GSFC, the University of Maryland, and

Computer Sciences Corporation (CSC) with each of
the organizations playing a key role: NASA/GSFC

as the user and manager of all of the relevant software

systems; the University of Maryland as the focus of

advanced concepts in software process and

experimentation; and CSC as the major contractor

responsible for building and maintaining the software

used to support the NASA missions. The original

plan of the SEL was to apply evolving software

technologies in the production environment during

development and to measure the impact of these

technologies on the products being created. In this

way, the most beneficial approaches could be

identified through empirical studies and then captured

once improvements were identified. The plan was to

measure in detail both the process as well as the end
product.

At the time the SEL was established, significant

advances were being made in software development

(e.g., structured analysis techniques, automated tools,

disciplined management approaches, quality

assurance approaches). However, very little empirical

evidence or guidance existed for selecting and
applying promising techniques and processes. In

fact, little evidence was available regarding which

approaches were of any value in software production.

Additionally, there was very limited evidence

available to qualify or quantify the existing software

process and associated products, or to aid in

understanding the impact of specific methods. Thus,

the SEL staff developed a means by which the
software process could be understood, measured,

qualified, and measurably improved. Their efforts

focused on the primary goal of building a clear
understanding of the local software business. This

involved building models, relations, and empirical

evidence of all the characteristics of the ongoing
software process and resultant product and

continually expanding that understanding through

experimentation and process refinement within a

specific software production environment.

1.2 SEL Process Improvement
Strategy

As originally conceived, the SEL planned to apply

selected techniques and measure their impact on cost

and reliability in order to produce empirical evidence

that would provide rationale for the evolving

standards and policies within the organization. As

studies were performed, it became evident that the

attributes of the development organization were an
increasingly significant driver for the overall

definition of process change. These attributes include

the types of software being developed, goals of the

organization, development constraints, environment

characteristics, and organizational structure. This

early and important finding provoked an integral

refinement of the SEL approach to process change.

The most important step in the process improvement

program is to develop a baseline understanding of the

local software process, products, and goals. The

concept of internally driven, experience-based process
improvement became the cornerstone of the SEL's

process improvement program.

Incorporating the key concept of change guided by

development project experiences, the SEL defined a

standard paradigm to illustrate its concept of software

process/product improvement. This paradigm is a

three-phase model (Figure 1) which includes the
following steps:

.

2.

.

Understanding: Improve insight into the

software process and its products by
characterizing the production environment,

including types of software developed,
problems defined, process characteristics, and

product characteristics.

Assessing: Measure the impact of available

technologies and process change on the products

generated. Determine which technologies are

beneficial and appropriate to the particular

environment and, more importantly, how the

technologies (or processes) must be refined to

best match the process with the environment.

Packaging: After identifying process

improvements, package the technology for

application in the production organization.

SEL-94-005

PACKAGE

Iterate

Goals (Experiment)

(e.g.. reduce

error rates)

(

UNDERSTAND

Infuse improved (verified) process

• Standards, tools, and training

Determine improvements to your business

• What impact does change have?

Know your software business (process and product)

• How do we do business today? (e.g., standards and techniques used, % time in
testing, module size)

• What are our product characteristics? (e.g., error rates, productivity, complexity)

Figure 1. The SEL Process Improvement Paradigm

This includes the development and enhancement •

of standards, tools, and training.

In the SEL process improvement paradigm, these

steps are addressed sequentially, and iteratively, for

as long as process and product improvement remains

a goal within the organization.

The SEL approach to continuous improvement is to

apply potentially beneficial techniques to the

development of production soitware and to measure

the process and product in enough detail to determine
the value of the applied technology within the

specific domain of application. Measures of concern

(such as cost, reliability, and cycle time) are

identified as the organization determines its major

short- and long-term objectives for its software

product. Once these objectives are known, the SEL
staff designs an experiment(s), defining the particular

data to be captured and the questions to be addressed

in each experimental project. A unique strength of

the SEL's process improvement approach is that it

was developed and has evolved based on scientific

method. Over the years, its key concepts, briefly

described below, have been captured and formalized

in the open literature:

Process evolution: the Quality Improvement

Paradigm (Reference I)

Measurement and control: the Goal/

Question/Metric method (Reference 2)

Structure and organization: the Experience

Factory (Reference 3)

The Quality Improvement Paradigm is a two-loop

feedback process (project and organization loops) that
is a variation of the scientific method. It consists of

the following steps:

Characterization: Understand the environment

based upon available models, data, intuition,

etc., so that similarities among projects can be

recognized.

Planning: Based on this characterization, set

quantifiable goals for successful project and

organization performance and improvement and

choose the appropriate processes and supporting

methods and tools to achieve the improvement

goals in the given environment.

SEL-94-005 4

• Execution: Construct the products using the

selected processes and provide real-time project

feedback based on the goal achievement data.

• Packaging: At the end of each specific project,

analyze the data and the information gathered to

evaluate the current practices, determine prob-

lems, record findings, and make recommenda-

tions for future project improvements. Then,

package the experience gained in the form of
updated and refined models and other forms of

structured knowledge based on this and prior

project experience. Finally, store the packages

in an experience base so they are available for
future use.

The Goal/Question/Metric (GQM) method is used

to define measurement on the software project,

process, and product in such a way that

• Resulting metrics are tailored to the

organization and its goal.

• Resulting measurement data play a constructive

and instructive role in the organization.

• Metrics and their interpretation reflect the values

and the viewpoints of the different groups

affected (e.g., developers, users, operators).

GQM defines a measurement model on three levels:

• Conceptual level (goal): A goal is defined for

an object, for a variety of reasons, with respect

to various models of quality, from various

points of view, and relative to a particular
environment.

• Operational level (question): A set of questions

is used to define models of the object of study

and then focuses on that object to characterize

the assessment or achievement of a specific

goal.

• Quantitative level (metric): A set of metrics,

based on the models, is associated with every

question in order to answer it in a measurable

way.

Although originally used to define and evaluate a

particular project in a particular environment, GQM

can also be used for control and improvement of a

single project within an organization running several

projects (References 4 and 5).

The Experience Factory organizational concept was

introduced to institutionalize the collective learning
of the organization that is at the root of continual

improvement and competitive advantage, it estab-

lishes a separate organizational element that supports

reuse of experience and collective learning by devel-

oping, updating, and delivering experience packages

to the project organization which is responsible for
developing and maintaining software. This structure

creates a symbiotic relationship where the

Project organization offers to the experience

factory its products, the plans used in its

development, and the data gathered during
development and operation.

Experience packagers transform these objects
into reusable units and supply them to the

project organization, together with specific

support that includes monitoring and
consulting.

As an operational experience factory, the SEL has

been facilitating software process improvement

within the FDD at NASA/GSFC for 18 years
(Reference 6). All SEL experiments have been

conducted in this production environment, which

consists of approximately 250 engineers developing
and maintaining systems that range in size from 10

thousand source lines of code (KSLOC) to over 1.5

million SLOC. The original SEL production

environment had approximately 75 developers
generating software to support a single aspect of the

flight dynamics problem. Over the years, the SEL

operation has grown to include more extensive

software responsibilities and, consequently, a larger

production staff of developers and analysts.

The SEL's pioneering work in the practical

application of software process improvement concepts

in the FDD has been recognized throughout the

software engineering community. In 1994, the SEL

was chosen as the inaugural recipient of the 1EEE
Computer Society Award for Software Process

Achievement. This award recognizes not only

process achievement, but leadership in the field and

outstanding contribution to the state-of-the-practice in

software engineering. The SEL has been in

continuous operation since 1976, and will continue

to operate as long as process and product

improvement remain a priority within its software
domain.

5 SEL-94-005

Section 2 The SEL Organization

The SEL comprises three partner organizations: the

Software Engineering Branch at NASA/GSFC, the

Institute for Advanced Computer Studies and

Department of Computer Science at the University of

Maryland, and the Software Engineering Operation at

CSC. The total organization consists of

approximately 300 persons. These personnel are

divided into three functional components, not

necessarily across organizational lines. The three

functional areas are

• Software development/maintenance

• Process/product analysis

• Data base support

The three components (developers, process analysts,

and data base support) are separate, yet intimately

related to each other. Each has its own goals, process

models, and plans, but they share an overall mission

of providing software that is continually improving

in quality and cost effectiveness. The

responsibilities, organizational makeup, and goals of

the SEL components are discussed in the chapters

that follow. Figure 2 provides a graphic overview of

their function and size, and Table 1 depicts the

difference in focus among the three groups.

DEVELOPERS

(SOURCE OF EXPERIENCE)

PROCESS ANALYSTS

(PACKAGE EXPERIENCE FOR REUSE)

STAFF

TYPICAL PROJECT
SIZE

ACTIVE PROJECTS

PROJECT STAFF
SIZE

TOTAL PROJECTS

(1976-1994)

250-275 developers

100-300 KSLOC

6-10 (at any given time)

5-25 people

120

NASA + CSC

Development
measures for
each project

Refinements to
development

process

STAFF

FUNCTION

PRODUCTS

(1976-1994)

10-15 analysts

• Set goals/questions/metrics

• Design studies/experiments

• Analysis/Research

• Refine software process

• Produce reports/findings

300 reports/documents

NASA + CSC + U of MD

DATA BASE SUPPORT

(MAINTAIN/QA EXPERIENCE INFORMATION)
//

STAFF

FUNCTION

5-8 support staff

• Process forms/data

• OA all data

• Record/archive data

• Maintain SEL data base

• Operate SEL library

SEL DATA BASE

FORMS LIBRARY

REPORTS LIBRARY

NASA + CSC

@ 160 MB

220,000

• SEL reports

• Project documents
• Reference papers

Figure 2 SEL Structure

@RE Q PAGE B' r;;K FI MED
7 SEL-94-005

Table 1. Focus of SEL Organizational Components

Focus and

scope

Goals

Approach

Measure of
Success

DEVELOPERS

Specific software
project

• Produce and maintain
software

• Satisfy user
requirements

• Use the most
effective software
engineering
techniques, as
provided by the
analysts

• Experiment with new
techniques with the
analysts' support

Validation and
verification of
software products

PROCESS
ANALYSTS

• Domain (multiple
projects)

• Analyze development
and maintenance
experience to define
improvement process

• Support developers

Assess the impact of
specific technologies

Produce models,
standards, and
training materials

• Packaging and reuse
of empirical software
experience

• Improved software
products

DATA BASE
SUPPORT STAFF

• Domain (multiple
projects)

Archive, maintain and
distribute development
and maintenance

experience

Maintain a library of
experiences, models,
and standards

• Efficient processes
for information
retrieval (data,
models, reports)

2.1 Software

Development/Maintenance

The FDD development organization, comprising

approximately 250-275 professional software

developers, is responsible for development and
maintenance of one segment of the ground support

software used by GSFC. The majority of the

software developers are CSC employees under
contract to NASA/GSFC; approximately 35 of the

developers are employees of NASA/GSFC. SEL

staff at the University of Maryland do not participate

directly in the development or maintenance of flight

dynamics software.

For a typical project, FDD developers are provided a

set of functional requirements for a mission, from

which they design, code, test, and document the

software. The systems developed are primarily non-
real time, non-embedded, ground-based applications,

and there are usually four or five projects in

development at any one time. Traditionally, most of
the software has been written in FORTRAN,

although the organization is currently evolving to

using C, C++, and Ada for new systems. After the

newly developed mission support software is tested

and accepted, another team from this same

organization takes over maintenance of the

operational system. Approximately 50 percent of the

development staff is allocated to software
maintenance.

The primary task of the development organization is

to produce quality software on-time and within

budget. They rely on another element of the SEL to

carry out the analysis and packaging of the process

improvement studies. The development organization

is not expected to produce standards, policies, or

training; nor are the developers expected to analyze
data. The success of the development organization

is measured by their ability to deliver a quality

software product that meets the needs of the user.

2.2 Process/Product Analysis

The second major function within the SEL is

analysis and process improvement. This effort is
supported by personnel from all three member

organizations: approximately 4 full-time people from

NASA/GSFC; 5-10 individuals, each spending

approximately 20 percent of their time, from the

University of Maryland; and approximately 5-8 full-

time people at CSC. This team defines studies to be

conducted, analyzes process and products generated

by the developers, and packages its findings in the

SEL-94-005 8

formof updated standards, revised training programs,

and new models specific to this development

environment. All of the SEL analysts are

experienced software engineers, many of whom have

a number of years of experience in flight dynamics

software development and/or maintenance.

The analysts use information such as development
environment profiles, process characteristics, resource

usage, defect classes, and statistics to produce models

of products and processes, evaluations, and refined

development information. Their products include

cost and reliability models, process models, domain-

specific architectures and components, policies, and
tools.

The goal of the analysts is to synthesize and package
experiences in a form useful to the development

group. Their success is measured by their ability to

provide in a timely way products, processes, and

information that can assist the developers in meeting
their goals.

2.3 Data Base Support

The third function within the SEL is the data

processing and archiving of the projects' experiences
in the SEL's measurement data base. This is

supported by approximately three full-time people at

NASA/GSFC and approximately five full-time

people at CSC. The data base support staff collect

the data that have been defined and requested by the

analysts; assure the quality of those data; organize
and maintain the SEL data base; and archive the

reports, papers, and documents that make up the SEL

library (see Figure 2). The group includes both

professional software engineers, who define and
maintain the data base, and data technicians, who

enter the data, generate reports, and assure the quality
of the information that is submitted to the SEL

library.

The goal of the data base support organization is to

manage the SEL measurement data and analysis

products efficiently. Their success is measured by
the efficient collection, storage, and retrieval of

information, conducted in a way that doesn't burden

the overall organization with unnecessary activities
and waiting periods.

9 SEL-94-005

Section 3. The SEL Process Improvement Concept

The SEL process improvement concept has matured

over more than a decade, with the most significant

changes to it being driven by experience at attempts
to infuse process change and improvement within a

production organization. The SEL improvement
concept, which is formalized in the Experience

Factory model, can be described as a "bottom-up"

software improvement approach (Reference 7), where

the process is defined and improved based on

corporate knowledge that is extracted from the

experiences of projects at the lowest level or bottom

of the organization. The SEL approach focuses on

continually using experiences, lessons, and data from

production software projects to ensure that

subsequent development efforts benefit, in terms of

improved software products and processes, from the

experience of earlier projects. The underlying
principle of this concept is the reuse of software

experiences to improve subsequent software tasks.

This reuse of experience is the driving element for

change and improvement in the software process.

3.1 Bottom-Up Improvement

Although the term "process improvement" is the

term most commonly used to characterize the efforts

of an organization to improve its software business,

the SEL philosophy asserts that the actual goal of the

organization is to improve the software product. The

process improvement concept stems from an

assumption that an improved process will result in an

improved product. However, if a changed process

has no positive impact on the product generated, then

there is no justification for making change. A

knowledge of the products, goals, characteristics, and

local attributes of a software organization is needed to

provide guidance to the evolutionary change to

process that focuses on the desired change to the

product as defined by the goals of the organization.

Two approaches to software process improvement

have been developed and applied in the industry.

The top-down approach (which is based on the

assumption that improved process yields improved

product) compares an organization's existing process

with a generally accepted high-quality standard

process. Process improvement is then defined as the
changes made to eliminate the differences between the

existing process and the standard set of practices.

This approach assumes that after change is made to

the process the generated products will be improved,

or at least there will be less risk in the generation of

new software. The most widely accepted and applied

top-down model is the capability maturity model

(CMM) (Reference 8), developed by the Software
Engineering Institute (SEI).

The SEL approach assumes that changes must be

driven from the bottom up, by local goals,

characteristics, and product attributes. Changes are
defined by a local domain instead of by a universal

set of accepted practices. In this approach, software

process change is driven by the goals of the particular

development organization as well as by the

experiences derived from that local organization. For

example, an organization whose primary goal is to

shorten "time-to-ship" may take a significantly

different approach to process change than an

organization would whose primary goal is to produce
defect-free software.

The top-down approach is based on the assumption

that there are generalized, universal practices that are

required and effective for all software development,

and that without these practices, an organization's

process is deficient. This paradigm has been accepted

in many software organizations that have applied

generalized standards, generalized training, and even
generalized methods defined by an external

organization (external to the developers) to all their

software. This concept does not take into account the

performance issues, problems, and unique software

characteristics of the local organization. The implicit

assumption is that even if an organization's goals are

being met and exceeded, if that organization does not

use the commonly accepted practices, it has a higher
risk of generating poor-quality products than an

organization that adheres to the defined processes.

The goals and characteristics of the local organization

are not the driving elements of change.

The underlying principle of the SEL approach is that

"not all software is the same." Its basic assumption

is that each development organization is unique in
some (or many) aspects. Because of that, each

organization must first completely understand its

local software business and must identify its goals
before selecting changes meant to improve its

software process. If, based on that understanding,

II SEL-94-005

change seems called for, then each change introduced

is guided by "experience"--not by a generalized set

of practices.

Neither the top-down approach nor the bottom-up

approach can be effective if used in isolation. The

top-down approach must take into consideration

product changes, while the bottom-up approach must

use some model for selecting process changes aimed

at improving product characteristics. Each concept

plays an important role in the goal of improving the
software business.

3.2 Measurement

The SEL approach uses a detailed understanding of

local process, products, characteristics, and goals to

develop insight. This insight forms the foundation

of a measurable, effective change program driven by

local needs. Because of this dependence on

understanding the software within the subject
environment, measurement is an inherent and vital

component of the SEL approach--measurement of

process and product from the start, measurement of

the effect of process change on the product, and

measurement of product improvement against the

goals of the organization. The CMM provides

guidance in building an understanding of software

process within the development organization, but the

SEL paradigm extends this concept to include
product characteristics such as productivity, error

rates, size attributes, and design characteristics.

in the SEL approach, measurement is not viewed as a

process element that is added as an organization

matures, but rather as a vital element present from the

start of any software improvement program. An

organization must use measurement to generate the

baseline understanding of process and product that

will form the basis of the improvement program.

The CMM includes the "software process

assessment" tool, which is effective for generating

baseline process attributes. The SEL's bottom-up

approach adds to those measures measurement of

specific product characteristics, so that change can be

effectively guided and observed.

The SEL concept is driven by the principle that each

domain or development organization must develop
and tailor specific processes that are optimal for its

own usage. Certainly, some processes and technolo-

gies are effective across a broad spectrum of domains

(possibly even universal), but before a development
organization settles on a particular process it must

take the critical steps of understanding its software

business and determining its goals. From there,

change can be introduced in a structured fashion and

its impact measured against the organizational goals.

3.3 Reuse of Experience

Historically, a significant shortcoming in software

development organizations has been their failure to

capitalize on experience gained from similar

completed projects. Most of the insight gained has
been passively obtained instead of being aggressively

pursued. Software developers and managers generally
do not have the time or resources to focus on

building corporate knowledge or planning

organizational process improvements. They have
projects to run and software to deliver. Thus, reuse

of experience and collective learning must become a

corporate concern like a business portfolio or

company assets. Reuse of experience and collective

learning must be supported by an organizational

infrastructure dedicated to developing, updating, and
supplying upon request synthesized experiences and

competencies. This organizational infrastructure

emphasizes achieving continuous sustained

improvement over identifying possible technology

breakthroughs.

The SEL represents this type of organizational ele-

ment. It is focused solely on reuse of experience and

software process improvement with the goal of im-

proving the end product. Because these activities

rely so significantly on actual software development

experiences, the developers, analysts, and data base

support staff organizations, while separate, are inti-

mately related to each other. Developers are involved

in process improvement activities only to the extent
that they provide the information and data on which

all process change is based. Process/product analysts

and data base support personnel are dedicated to their

process improvement responsibilities and are in no

way involved in the production of software product.

Additionally, the SEL research/data base support
teams have management and technical directors

separate from the development projects. This ensures

continuity and objectivity in process improvement
activities and the availability of resources for

building, maintaining, and sustaining the process

improvement program.

SEL-94-005 12

Section 4. SEL Experimentation and Analysis

Each production project in the FDD is considered an

opportunity for the SEL to expand its knowledge

base of process understanding and improvement.

There are typically 4 or 5 projects under development

at any one time, and an additional 15 to 20 projects

in the maintenance phase. All of the projects in the

FDD environment are considered experiments, and

the SEL has completed over 120 project studies over

the years. For each of these projects, detailed

measurements were provided toward the end goal of

analyzing the impact that any change to software
process had on the resultant software product.

When research in the production environment is

being planned, the following activities occur: the

SEL analysis team defines a set of goals that reflects

current goals in process/product improvement and

writes an experiment plan in which required data are

identified and experimental processes are outlined; a

SEL representative is assigned to the pro-

ject/experiment; and technology/process training

needs are assessed. SEL software develop-

ment/maintenance project personnel then provide the

requested information (defined in the experiment
plan) to the SEL data base support staffwho add it to

the data base for access by the analysts conducting
the experiment. These SEL activities are described in
the sections that follow.

4.1 Defining Experiments

Based on organizational goals and process

weaknesses identified in the understanding step, SEL
analysts identify software process modifications that

they hypothesize are likely to improve the resultant

product. To do this, analysts review literature

looking for candidate new technologies that address

the particular needs of their organization. In cases

where the candidate technologies are closer to the

state-of-the-art than the state-of-the-practice,
university studies are conducted on test beds before

an experiment is undertaken in the production

environment. Analysts also consult developers who
have insight into the problem area and who may

suggest promising process changes to pursue.

For each process modification selected, the analysts

design an experiment to test the hypothesis. As

experiments are being defined, the analysts consult

the development team to determine if proposed

changes (such as applying a particular technique)
could be studied on a project without undue risk.

Even if risk is significant, a team may be willing to

try the new process provided a contingency plan is
developed to assure that a disaster can be avoided. It

is important that the development team be factored

into decisions on the proposed changes and that their

full support is obtained.

Once a project is identified and a modified process is

selected, an experiment plan is written describing the

goals, measures, team structure, and experimental

approach. A sample SEL experiment plan is

included in Appendix A. If the study is very small

(e.g., collect inspection data to measure the cost of

software inspections), a formal experiment plan may
not be written.

The basic project/experiment information is then

provided to the SEL data base support group so that

project names, subsystem names, personnel

participating, and forms expected can be logged, and

the data base can be readied for data entry.

Once an experiment is defined and the study

objectives have been agreed upon with the

developers, a representative from the analysts is

assigned to work directly with the development team

for the duration of the project. This representative

keeps the development team informed of

experimental progress, provides information on the

particular process changes being applied, and answers

any questions the development team may have with

regard to SEL activities. The SEL representative

does not manage or direct the development project in
any way. The SEL representative attends reviews and

development status meetings and looks at
measurement data collected. At the conclusion of the

project, the SEL representative also writes a section

for inclusion in the project's development history

report which discusses the experimental goals and
results.

For most projects, the experiment being conducted

does not have a significant impact on the

development procedures and typically does not

involve major changes to the technologies being
applied. If there is a more significant change (e.g.,

using Ada, applying Cleanroom technique, or using

13 SEL-94-005

inspectionswith a team unfamiliar with the

technology), the analysts arrange for training for the

development team. For example, when the SEL

studied Cleanroom technique on one project,

approximately 40 hours of training in the technique

was provided to the first development team using it

in this environment (Reference 9).

4.2 Collecting Measures

In support of the SEL experiments, technical and

management staff responsible for software

development and maintenance provide the requested

measurement data. Although the types of data

requested may vary from project to project to satisfy

the requirements of particular experiments, the core
set of information is invariant. Basic data are

collected from every project, including effort, defects,

changes, project estimates, project dynamics (e.g.,

staffing levels), and product characteristics. These

data are provided on data collection forms. Figures 3

and 4 are samples of the forms used to report effort

data and defect/change data. Details of the core

measures used, as well as the measurement program

in general, can be found in the Software
Measurement Guidebook (Reference 10). The full set

of data collection forms and procedures can be found

in the Data Collection Procedures for the SEL

Database (Reference I I).

As the developers/maintainers complete the forms,

they submit them to the data base support personnel
who assure the quality of the information by

checking the forms and data for consistency and

completeness. When data are missing (e.g., if an

expected form is not submitted), the developer is

informed of the discrepancy and is expected to

provide or correct the data. Data base support staff
then enter the data in a central data base and perform

a second quality-assurance step by checking for data

entry errors by comparing the data base information

against the original paper forms.

In addition to the forms that are completed by the

developers and managers, several tools are used to

gather information automatically such as source code

characteristics (e.g., size, amount of reuse,

complexity, module characteristics) or changes and

growth of source code during development. Data

base support personnel execute the tools to gather
these additional measures, which are then entered in

the SEL data base.

Additionally, subjective measures are recorded on the

development process. These data are obtained by

talking with project managers and by observing
development activities. Data such as problem

complexity, adherence to standards, team experience,
stability, and maturity of support environment are

captured at the termination of each project. (See

Reference 10 for details on these measures.)

Figure 5 depicts the life-cycle phases during which

the core SEL measures are collected. Each project

provides these data and may provide additional

measures required for the specific experiment in

which it is participating.

4.3 Analyzing Data

The analysts use these data together with information

such as trend data, previous lessons learned, and

subjective input from developers and managers, to

analyze the impact of a specific software process and

to build models, relations, and rules for the corporate

memory. As specific processes are studied (such as

inspections, Cleanroom), the analysts, joined by
willing participants from the development

organization, complete analysis reports on the study

and may even prepare a paper or report for publication

in the open literature. Development team

participation is strictly voluntary in this step, as the

analysts are ultimately responsible for producing the

report.

As the project information becomes available, the

analysts use it not only to assess particular processes,
but also to build models of the process and product

so that the experiences of each development effort can

be captured and applied to other projects where

appropriate. Data are used to build predictive models

representing cost, reliability, code growth, test
characteristics, changes, and other characteristics.

The analysts also look at trends and processes applied
to determine whether or not any insight can be gained

from data describing particular methodologies used

during development or maintenance.

One of the most important facts that the SEL has

learned from its experience with analysis of software

data is that the actual measurement data represent

only one small element of experimental software

engineering. Too often, data can be misinterpreted,

used out of context, or weighted too heavily even

when the quality of the information may be suspect.

SEL-94-005 14

Name:

Project:

Personnel Resources Form

Date: (Friday):

SECTION A: Total Hours Spent on Project for the Week:_

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity Activity Definitions Hours

Predesign Understanding the concepts of the system. Any work prior to the actual
design (Such as requirements analysis).

Create Development of the system, subsystem, or components design. Includes
Design development of PDL, design diagrams, etc.

Read/Review, Hours spent reading or reviewing design. Includes design meetings, formal
Design and informal reviews, or watkthroughs.

Write Code Actually coding system components. Includes both desk and terminal code
development.

Read/Review Code reading for any purpose other than isolation of errors.
Code

Test Code Testing individual components of the system. Includes writing test dnvers.
Units

Debugging Hours spent finding a known error in the system and developing a solution.
Includes generation and execution of tests associated with finding the error.

Integration Writing and executing tests that integrate system components, including
Test system tests.

_Acceptanca Running/supporting acceptance testing.
Test

Other Other hours spent on the project not covered above. Includes management,
meetings, training hours, notebook, system description, user's guides, etc.

SECTION C: Effort On Specific Activities (Need not add to A)
(Some hours may be counted in more then one area; view each activity separately)

Rework: Estimate of total hours spent that were caused by unplanned changes or errors.
Includes effort caused by unplanned changes to specifications, erroneous or changed
design, errors or unplanned changes to code, changes to documents. (This includes all
hours spent debugging.)

Enhancing/Refining�Optimizing: Estimate of total hours spent improving the efficiency or
clarity of design, or code, or documentation. These are not caused by required changes or r_
errors in the system.

Documenting: Hours spent on any documentation on the system. Includes development of

design documents, prologs, in-line commentary, test plans, system descriptions, user's
guides, or any other system documentation.

Reuse; Hours spent in an effort to reuse components of the system. Includes effort in looking [_]
at other system(s) design, code, or documentation, Count total hours in searching,
applying, and testing.

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

Figure 3. Effort Data Coflection Form

15 SEL-94-005

Name:

Project:

CHANGE REPORT FORM

Approved by:

Date:

Section A - Identificatlon

Describe the change: (What, why, how)

Effect: What components are changed?

Prefix Name VerMon

Effort: What additional components

were examined In determining whet

change was needed?

(Attach list if more space Is needed)

Location of developer's source flies

Need for change determined on:

Change completed (incorporated into system):

month day year

Effort in person time to isolate the change (or error):

Effort In person time to implement the change (or correction):

Check lmm lf cluingo lnvolves Ada []com_n.m (wso,comp_w
questions on rever_ sl_)

1 hr/llees 1 hr/l day 1/3 days >3 days

Section B - All Changes

Type of Change (Check one)

[] Error correction

[] PIsnmKI enhancement

[] ImpicmenWtlon of
roqul_ change

D Imp,o_:_ ofcl,,_/.
maintainability, or documentailon

Dlmwovemem of user sewicss

Dlmteftion/deletion of debug code

Dop.m_.on of..-vm._
accuracy

[]Adaptation to envlro41ment change

[]Other (Dsecr*haklow)

Effects of Change
Y N

[] [] Was the change ot correctlon to ono lnd only one
component? (lAura! match Effect In Section A)

[] [] Old you look It any Other compomlm? (Mult match
Effort in Section A)

[] [] Did you have Iobelw4Meof pmlmetarspessed
exl_lcitiy _" implicitly (e.g., COMMON blocks) to or
from the changed components?

Source of Error
(Check one)

Section C - For Error Corrections Only
Class of Error

(Check most applicable)*

[] RequlranHmts

[] Functional specifications

[] Design

[] coda
[] Previous change

[] Initlallzatlon

[] Logic/convolstmc_ra
(s.g., now of control Incorrect)

[],.,.. (_m*)
(nn,Dduic-lo-module ¢onmlunlcation)

[] Ir_,_, (s_mw)
(module to extarnal conl_icatlon)

[] _ (value or structure)
(e.g., wrong variable used)

[] comp._Jonsl
(e.g. error In math exprasslon)

'11 two are eqtmlly sppllcabic, ofwck the
one higher on the fist.

Characteristics

(Check Y or N for all)

Y N

[] [] Omission srrm" (e.g., immethtng wall left out)

[] [] _ error (0.9., something Incorrect was
Inctudad)

[] [] Error was crmlted by transcription (clerical)

For Llbrm'lsn's Use Only

Number:
Date:
Entered by:.
Checked by:

NOVEMBER 1991

Figure 4. Defect�Change Data Collection Form

SEL-94-005 16

tgO

tO
t-
r_

tO
"O

E
tO
U)

Process

• Methods
• Tools

• (etc.)

Product

• Size
• Cost

• (etc.)

I Dynamics(growth, changes)

Errors/changes
(unit test to delivery)

Project estimates (size, cost, dates, reuse)

Development effort (tracked by time and
by activity)

_Requirements I Design Code Test
Analysis I I I Acceptance

Functional
requirements

received

Maintenance errors/changes

Maintenance estimates

Maintenance effort

Maintenance

Begin maintenance and operation

Figure 5. SEL Core Measures

Having learned from its extensive data analysis
experience over the years, the SEL now follows these

key rules (Reference 10):

Software measures will be flawed, inconsistent,

and incomplete; the analysis must take this into

account. Do not place unfounded confidence in
raw measurement data.

Even with the extensive quality-assurance process and
the rigor of the software measurement collection

process in the SEL, the uncertainty of the data is still

quite high. An analyst must consider subjective

measures, qualitative analysis, definition of the

context, and an explanation of the goals. If one
merely executes a high number of correlation analysis

studies on a high number of parameters, chances are

that some (possibly very questionable) statistic will

appear. Extreme caution must be applied when using

software measurement data, especially when the

analyst is not intimately familiar with the

environment, context, and goals of the studies.

Measurement activity must not be the dominant

element of software process improvement;
analysis is the goal.

When the SEL began to study software process, the

overhead of the data collection process dominated the

total expenditures for experimental activities. As the

SEL matured, it found that the successful analysis of

experiments should consume approximately three
times the amount of effort that data collection

activities require. This ratio was attained through a

gradual cutback in data collection to where the only
information requested (beyond the core measures) was

I7 SEL-94-005

that which could be clearly defined as relevant to the

goals of a particular experiment.

• Measurement information must be treated

within a particular context; an analyst cannot

compare data where the context is inconsistent
or unknown.

Each set of measurement data that is archived in the

SEL data base represents a specific project, with

unique characteristics and unique experimental goals.

These goals may have significantly influenced the

process used, the management approach, and even the

general characteristics of the project itself. Without

knowledge of the context in which the data were

generated and the overall project goals as well as

process goals, significant misinterpretations of the
data can result.

4.4 Improving Process

Measurement activities represent a relatively small

element of the overall process improvement task.

Results of analysis of experimental data must be

judiciously applied toward optimizing the software

development and maintenance process. The

experimental software engineering results are captured
both in studies as well as in refined processes

available to the production personnel. The SEL

packages its analysis results in the form of updated
standards, training, and tools. This packaging

facilitates the adoption of revisions to the standard

processes on ongoing and future software projects.

The SEL conducts three general types of analysis, all

of which are active continually in the environment.

They include

• Pilot studies of specific techniques and

technologies on a project or set of projects [e.g.,

Cieanroom impact on design, impact of object-

oriented design (OOD) on code reuse, impact of

inspection on coding errors].

• Studies of completed projects for development

and refinement of local process and product

models (e.g., cost models, error characteristics,

reuse models).

• Trend analysis of completed projects to track

the impact of specific process changes on the
environment as a whole (e.g., tailored

Cleanroom, OOD, software standards).

All of the analyses are dependent on the project

measures and all require a thorough understanding of

context, environment, goals, problem complexity,

and project characteristics to be able to derive results

that can be fed into the overall process improvement

program.

A study of a specific process or technique is usually

termed a "pilot study." Although these studies often

occur in the university environment, they are also

conducted on production projects where some risk

can be tolerated. These projects are testing new and

unfamiliar techniques to determine their value in the

production environment and to determine whether
more extensive studies would be beneficial. On pilot

projects, the analyst typically analyzes each phase of

the project in detail and reports back to the

development team the intermediate results as the

project progresses toward completion. In general, the
SEL conducts no more than two pilot studies at any

one time because of the extensive amount of analysis

and reporting. These studies normally yield multiple

reports and papers that look at every aspect of the

impact of the new technology, make
recommendations for tailoring, and project the value

of the enhanced process in an expanded application.

The second class of study involves multiple projects,

where the goal is to expand and update the

understanding of process and product attributes.
Cost models are enhanced, error attributes are

studied, and relations between process and product
characteristics are analyzed for classes of projects.

These studies normally do not use data from projects

under development, but focus on completed projects.

This type of analysis requires not only the archived
measurement data, but also a detailed knowledge of

each project's context (including goals, processes

used, problem complexity, size, and other product
attributes). Trends in software quality, productivity,

as well as profiles of the software product are

produced so that specific needs and potential process
enhancements can be identified.

Trend analysis also looks at multiple completed

projects. The goal of these studies is to determine

the appropriate application of evolving technology
and methods within the environment as a whole, or

at least for a specific class of projects. After pilot

projects have been completed and appropriate

tailoring or enhancement of process changes have
been made, additional projects apply the tailored

process. The additional application of the methods

may involve only a single element of the originally

defined process. For instance, although the
Cleanroom methodology includes specific techniques

for management, design, implementation, testing,

SEL-94-005 18

andtheinspectionprocess,it mayturnoutthatonly
the implementationand testingtechniquesare
appropriatefor furtherapplication.Onceit is
determinedwhichprocesschangesareappropriatefor
a broaderclassof projects(or possiblytheentire
developmentenvironment),theseelementsof the

processareincorporated into the software standards.

Additionally, the training program may be updated to
reflect the refined process. (See the discussion of

packaging in Chapter 5 for a detailed description of
the SEL training program.)

19 SEL-94-005

Section 5. SEL Experiences: Understanding,
Assessing,and Packaging

The SEL paradigm has been applied on
approximately 120 production projects in the FDD.

Each project has provided detailed measurement data

for the purpose of providing more insight into the

software process, so that the impact of various

software technologies could be empirically assessed.

Projects have ranged in size from 10 thousand source

lines of code (KSLOC) to 1.5 million SLOC, with

the majority falling in the 100-250 KSLOC range.
All of the information extracted from these

development and maintenance projects is stored in

the SEL data base and used by the analysts who

study the projects and produce reports, updated
standards, tools, and training materials.

During the understanding phase of the SEL
paradigm, the goal is to produce a baseline of

development practices and product attributes against

which change can be measured as process

modifications are applied. Additionally, the
understanding process generates the models and

relations used to plan and manage the development

and maintenance tasks. The goal of the assessing or

experimental phase is to determine the impact of

specific process changes on the overall goals of the
organization. In the packaging phase of the

paradigm, those practices that have proven
measurably beneficial are incorporated into the

organization's standards, policies, and training
programs.

5.1 Understanding

The most critical element of the SEL's process

improvement program is the understanding step---
where the only goal is to gain insight into the local

software business. This first step cannot provide the

justification for claiming that one process is better

than another, but instead yields a baseline of the

characteristics of the software, including both process

and products, based on which change and meaningful
comparison can be made.

Although the initial plan was to begin experimenting
with various techniques, the SEL soon learned that

without a firm, well-understood baseline of both

process and product characteristics, valid experimen-

tation was impossible. In order to build this

understanding, information gathered from the first

5-10 projects was primarily used to generate models,
relations, and characteristics of the environment.

These models and their understanding proved to be a

significant asset to the management, planning, and
decision-making needed for effective software

development.

The understanding process, begun with those first

5-10 projects, continues today on all projects. The

various models are continually updated as the process

is better understood, and as new technologies and

methods change the way the SEL views software

development. Table 2 lists II projects active
between 1985 and 1990 that were included in the

early SEL baseline.

Table 2. SEL Baseline (1985-1990)

Project

GROSIM

COBSIM

GRODY

COBEAGSS

GROAGSS

GOESIM

GOFOR

GOESAGSS

UARSTELS

GOADA

UARSAGSS

Start Date

8t85

1/86

9/85

6/86

8/85

9/87

6/87

8/87

2/88

6/87

11/87

End Date

8187

5/87

7/88

7188

4/89

7/89

9/89

11/89

12189

4/90

9/90

By examining the effort data of these projects, the

SEL built its baseline of software cost expenditures

by phase and by activity. This is some of the most
basic, yet often overlooked, information for software

environments. By looking at a series of projects, a
simple model of effort distribution can be built to

depict the cost of design, code, test, and other

activities. Such data are accumulated weekly from all

developers, managers, and technical support using a

21

PRECEI NG-.PAEE i Oi"
SEL-94-005

data collection form. The form captures effort

expended on software design, testing, coding, and the
amount of time spent on code reading vs. code

writing• (See Figure 3 for a sample effort data
collection form.)

Figure 6 illustrates distribution for the effort data

based on the projects in this baseline. These data

represent ! I projects over 5 years, consuming a total

of approximately 65 staff-years of effort. The data
show that approximately 25 percent of the cost of

producing the software is spent on activities other
than designing, coding, or testing. This "other"

activity includes meetings, travel, reviews, training,
etc. The SEL has found that this value has remained

almost constant for the entire time the SEL has been

closely monitoring projects; in fact, it has increased

slightly over time instead of decreasing as SEL staff
first expected that it would. This time represents an

important component for project budgets, one that is

often overlooked by managers who lack a thorough

understanding of their baseline process. One

surprising observation has been that the basic
characteristics of this environment do not radically

change from year to year even with continuous

modifications being made to the underlying

processes. The profile of the software environment

changes very slowly, in Figure 6, the data are

represented in two ways:

One representation is effort by phase, where the

total hours reported each week are attributed to

the phase that the project is currently executing;

i.e., designing from start through review and

acceptance of design, coding from start through

beginning of system testing, and testing from

the start through system delivery. These data

require only that the phase dates be known and
that the total hours worked each week be

reported by the development staff.

The second representation is effort by activity,
where weekly information is broken down to

the particular activity that the programmers were

performing during that week. For example,

they may report design hours even though the

project was well into the coding phase. This
modeling of the data provides a more accurate

view of project interactions, as compared to the

model that relies on (somewhat arbitrary) phase

dates often set before project initiation.

EFFORT DISTRIBUTION BY LIFE-CYCLE PHASE

D s oQn

EFFORT DISTRIBUTION BY ACTIVITY

26%

\\\ g

code reading

Figure 6. Effort Distribution by Phase and Activity

SEL-94-005 22

Along with cost and schedule,reliability and
correctnessof the resulting code are considered

attributes of interest to management. These attributes

also contribute to the expanding understanding of the
software process and product in the environment.

The SEL captures these attributes by collecting defect
data. The SEL defined its own classes of errors to

ensure internal consistency in the data. Types of
errors include

• Computational errors--improper calculations

within the source program, such as writing the

wrong form of an expression.

• Initialization errors--improper settings of the
initial value of variables.

• Logic/control errors---errors in flow control in a

program, such as incorrect branches as the result

of evaluating an if-statement expression.

• Interface errors--include both internal and

external errors and represent invalid information

(e.g., wrong data) being passed between
modules, such as in a subroutine call.

• Data errors--wrong variable used in a
calculation.

The SEL continually collects error data (starting

when unit test is completed and continuing through

delivery of the software and during maintenance) so

that it continually understands the numbers and types

of errors occurring in the software. This information

is as important as the effort data. Together, they
constitute two of the most critical core measures that

the SEL has found. On maintenance projects, defect
data are collected on a modified form which the SEL

developed in 1990 when the organization became

responsible for software maintenance as well as

development.

Over 2000 errors were classified and studied from the

projects in the 1985-1990 baseline. The error class

distribution as well as the origin of errors (i.e.,

during what phase/activity the defect entered the
software) are shown in Figure 7.

An earlier SEL study of errors provides an example
of how models of software characteristics can be

developed. By tracking five projects of similar

complexity and size, the uncovered errors showed a

decreasing step function for their rate of detection

during sequential phases of the projects. From these

data and trends, the SEL developed an internal model
of expected error occurrence and detection rates for its

class of software (see Figure 8). More recent studies

show that the step function is still present, although

the error rates have decreased significantly.

CLASSES OF ERRORS

Data from ~11 projects over 5 years (over

ORIGIN OF ERRORS

4000 errors sampled)

Figure 7. SEL Error Characteristics

23 SEL-94-005

o
-.J
O3
x4

tw
o

n_
UJ

6
X

X

X

X

X

X

X X
X

X
XX

X

X Lxx x x x

o i l
CODE/TEST SYSTEM ACCEPTANCE

TEST TEST

Based on 5 similar projects in SEL (1983-1987)

OPERATIONS

Figure 8. Error Detection Rate Model

in addition to effort and defect data, other parameters

are useful for developing a total understanding of the

local environment. By counting defects found during

the development of the software, then counting

defects found during the operation and maintenance

phases, the SEL developed a general understanding of
the overall reliability of the software. Models of
characteristics such as defects, change rate, effort

distribution, and documentation size all provide

useful information toward the development of

improved models of software leading toward the

capability of engineering the software process with
well understood relations, models, and rules.

Using a sampling of projects developed during the

early years of the SEL (late 1970s to mid-1980s), a
set of models and relations was produced which, was

used as the baseline for planning, managing, and

observing change over time (see Table 3). One of the

more surprising observations was that, after years of

operation, the models changed very slowly--even

with the significant technology and process changes
introduced over time. Table 4 describes the

characteristics of another set of software projects

active during the late 1980s and early 1990s. The
differences between this and the earlier

models/relations are surprisingly small, but there is

change.

Of all the models and relations that the SEL has

developed during the understanding phase, the most

useful for project planning and management and for

observing change have been

• Effort distribution (cost characteristics).

• Error characteristics (numbers, types, origins).

Change and growth rates (of the source code

during development).

The first two of these have been described in some

detail in this section. These very basic pieces of

information are being collected continually; they are

used to observe change and improvement and to

assess process impact.

SEL-94-005 24

Table 3. Initial SEL Models/Relations

Productivity code rate = 26 new lines per day

Effort distribution Data Activity

Design 26% 23%

Code 38% 21%

Test 36% 30%

Other 26%

Pages of documentation doc = 34.7 (KSLOC.93)

Maintenance cost -12% development cost per year

Reuse cost

FORTRAN 20% of new

Ada 30% of new

Software size estimate growth 40%

Source: SEL Relationship, Models and Management Rules, 1991

Table 4. More Recent SEL Software Characteristics (late 1980s)

Productivity

FORTRAN

Ada

code rate = 26 new lines per day

code rate = 36 new lines per day

Effort distribution Data

Low reuse

Design 24%

Code 45%

Test 31%

Other

High reuse*

Design 26%

Code 38%

Test 36%

Other

Activity

21%

26%

25%

28%

17%

17%

32%

24%

Reuse cost

FORTRAN 20% of new

Ada 30% of new

Software size estimate growth

Low reuse 40%

High reuse 20%

*High reuse = >70% reuse

Source: Cost and Schedule Estimation Study Report, 1993

25 SEL-94-005

5.2 Assessing

After establishing a baseline of process, product, and
environment characteristics and determining

organizational goals, the next step in applying the

SEL paradigm is to assess the value of any process

change. In the SEL, these assessments are called

"experiments," and each project that is developed in

the production environment is viewed as an

experiment. Some of the studies are meant only to

establish models of process or product, while other

experiments are designed to evaluate the impact that a

significant process change may have on the local
software business--both process and product. Some

of the experiments do not make overt changes to the

established development process in the SEL, but are
monitored mainly to establish the baseline

understanding of the process. Additionally, some

technologies require multiple projects to be

completed before the impact of the change can be

fully understood and before recommendations can be

made for tailoring the process for local use.

The structure of the SEL, as a partnership of GSFC,

CSC, and the University of Maryland, has permitted

a wide variety of experiments to be conducted,

maximizing the skills and resources of each of the

contributing organizations. Experiments have ranged

across numerous technologies, from minor process

change (e.g., adding code-reading techniques to
measure resulting error rates) to major process change

(e.g., object-oriented design, Cleanroom, Ada).

Through the experimentation process, the SEL has
gained broad insight into the impacts of these

technologies and processes and has reported

extensively on its findings. Some representative

studies are discussed in the paragraphs to follow.

They include assessments of

• Design approaches

• Testing techniques

• Cleanroom methodology

• Ada/OOD

° Independent verification and validation (IV&V)

5.2.1 Studies of Design Approaches

Some studies require only an understanding of

the current development environment. These

are low-impact studies that can be undertaken

with little risk to projects under development.

The following design study is one such

experiment.

In 1985, several experiments were conducted to

determine the value of various design characteristics

on the quality of the end product. This particular

study used available information already being

captured from development projects; there was no
need to retrain the development personnel in

particular design techniques. The goal was to
determine if the "strength and coupling" criteria

described by Constantine and Meyers (Reference 12)

could be used as a predictive metric to determine the

reliability of software.

A set of 453 software modules was selected from 9

completed projects for which detailed measurement

information existed. The measures included design

characteristics, number of defects found in the

modules, and module size. This study was described

in detail in a paper presented at the International

Conference on Software Engineering (Reference 13).

Strength was measured by the number of functions

performed by an individual module, as determined by

the authoring programmer. The 453 modules were

classified in the following way:

90 modules were of low strength and averaged
77 executable statements.

176 modules were of medium strength and

averaged 60 executable statements.

187 modules were of high strength and averaged
48 executable statements.

As a control, module size was also used. Small

modules had up to 31 executable statements;
medium-sized modules had up to 64 executable

statements; and large modules had more than 64
executable statements. Error rates were classified as

low (0 errors/KLOC), medium (< 3 errors/KLOC),

and high (> 3 errors/KLOC).

In analyzing error rates for these modules, strength

proved an important criterion for determining error

rates (see Figure 9) and proved more effective than

simply using size as a predictor for defects. For

example, 44 percent of the low-strength modules had

high error rates; for high-strength modules, error rates

ranged from 44 percent to only 20 percent. On the
other hand, using size as a predictor of error, 27

percent of large modules were error prone while 36

SEL-94-005 26

percentof small modules were error prone, indicating
that module size has little effect on error ratio.

Using all of the data available for the study, the

SEL's baseline understanding for strength became:

Good programmers tend to write high-strength
modules.

Good programmers tend not to show any
preference for particular module size.

Overall, high-strength modules have a lower

fault rate and cost less than low-strength
modules.

• Fault rate is not directly related to module size.

5.2.2 Studies of Testing

Some studies are best carried out in small

controlled environments. Using the university

environment as an initial testing laboratory is

useful for these studies. After validating the

results in the university environment, the

concept can be applied in an operational

setting. The following testing experiment is an

example of that approach.

Reliability of the software produced is of continuing

concern to the SEE The goal of one study was to

evaluate several testing techniques in order to

determine their effectiveness in discovering errors.

The techniques evaluated in this experiment were

• Code-reading of the source program by
programmers other than the authors.

• Functional (i.e., black box) testing of the source
program to the specifications (i.e., in-out

behavior) of the program.

• Structural (i.e., white box) testing by
developing test cases that execute specific

statement sequences in the program.

Initially, a study was performed at the University of

Maryland using 42 advanced software engineering

students. Based upon positive results of this initial

study, 32 programmers from NASA and CSC were

recruited. All knew all three techniques, but were

most familiar with the functional testing approach

generally used at NASA. Three FORTRAN programs
were chosen (ranging from 48 to 144 executable

statements containing a total of 28 faults). All 32

programmers evaluated the three programs using a
different testing technique on each program.

HIGH-STRENGTH MODULES

MEDIUM-STRENGTH MODULES

LOW-STRENGTH MODULES

High = >- 3 errors/KSLOC
Medium = < 3 errorslKSLOC

Figure 9. Fault Rate for Classes of

Module Strength

27 SEL-94-005

Themainresultsof thisstudycanbesummarizedas
follows:

• Codereadingwasmoreeffectiveatdiscovering
errors than was functional testing, and
functionaltestingwasmoreeffectivethan
structuraltesting(SeeFigure10).

• Codereadingwasmorecosteffectivethaneither
functionaltestingor structuraltestingin
numberof errorsfoundperunit of time(See
Figure11). Structuraltestingandfunctional
testinghadaboutthesamecosts.

Thestudyalsoproducedsomeinterestingresults
concerningprogrammerexpertiseandthediscoveryof
faults.Spacedoesnotpermitafull explanationhere
(seeReference14forfurtherdetails),buttheresults
canbesummarizedasfollows:

The FORTRAN program built around abstract

data types had the highest error discovery rate.

This was an early indicator of the value of
OOD.

More experienced programmers found a greater

percentage of the faults than less experienced

programmers.

Code reading and functional testing found more
omission and control faults than structural

testing. Code reading found more interface

faults than the other two techniques.

This study, besides providing an assessment of the

value of each of the testing techniques, adds to our

understanding of the underlying baseline technology

for later experiments.

NUMBER OF FAULTS DETECTED

5.1

Reading

4.5

Functional

3.3

Structural

• Code reading uncovered more errors than other methods;
functional testing uncovered more errors than structural testing:
(ct < .005).

• While different quantities of faults were detected in each
program, the percentage of faults detected per program was the
same.

• Advanced students uncovered more faults than other students (5

< .005); intermediate students uncovered the same amount of
faults as the junior students did.

• Percent faults uncovered correlates with percent fell by tester to
have been uncovered: R = .57 ((_ < .001).

Figure 10. Fault Detection Rate by Testing Method

SEL-94-005 28

COST-EFFECTIVENESS (NUMBER OF FAULTS DETECTED/EFFORT)

3.3

Reading

1.8

Functional

1.8

Structural

• Code reading was more cost-effective than the other methods [((x < .005), est + 1.5(4)].

• There was a different overall detection rate for one program.

• Techniques did not differ in total detection time.

Figure 11. Cost of Fault Detection by Testing Method

5.2.3 Studies with Cleanroom

The following study of Cleanroom software

development is an example of the use of pilot

studies of new processes that pose great risks

to the development organization. In this case,

the method was studied for several years at the

University of Maryland before being testing in
the SEL operational environment.

Reliability and defect rates have always been

important components of understanding the

environment. The Cleanroom technique, developed

by Harlan Mills of IBM, proposed to radically alter

how programs are developed in order to affect these
rates. The SEL looked at Cleanroom as another

process that might significantly improve their

development process. The SEL pursued it because

results of the testing study and an earlier

environment/tools study pointed to techniques that
strengthen discipline as high-leverage candidates.

The idea behind Cleanroom is relatively simple.

After a programmer implements a function, the

programmer must verify that the function meets its

specification, rather than relying on unit testing to
show that it apparently works. Cleanroom, then, has

the following attributes:

Coding takes longer than traditional

development because the verification step must

be added. Programmers must truly understand

their programs in order to verify the functions.

Function understanding and verification results
in significantly fewer errors, which results in

much less system test--an expensive part of
development.

Overall result is lower cost and improved
reliability.

Since 1988, several projects have been developed in

the SEL using the Cleanroom methodology. To pre-

pare developers for using the Cleanroom technique, a
series of training courses was given. A pilot project

was undertaken which proved to be very successful.

Time to understand the method (from training until

the start of the second Cieanroom project) was ap-
proximately 26 months. Two follow-on Cleanroom

29 SEL-94-005

projectswere undertaken.A smallerin-house
developmentwasvery successful,but a larger
contractedprojectwasnotsuccessful.It wasnot
clearwhetherproblemsonthelargerprojectweredue
to scalingupof Cleanroomto largertasksor to a
lackof trainingandmotivationof thedevelopment
teamonthisproject.Becauseofthedifferencesthat
Cieanroomimposesonthedevelopmentprocess,a
fourth Cleanroom project is now underway for

evaluation before declaring the technique

"operational."

Compared to the SEL baseline process, it was clear
that the Cieanroom development process was

different (Figure 12). Design time and code reading

grew significantly, while code writing and testing

times all dropped. Defect rates improved (Figure 13)

although productivity remained about the same using
this new technology. The results of these studies are

reported in more detail in Reference 15.

5.2.4 Studies with Ada and OOD

Some studies impose a great risk on the

development organization. In such cases,

experiments must be carefully controlled The

SEL evaluation of Ada was one such study.

This experiment also shows the difficulty of

trying to isolate single processes for
evaluation.

FORTRAN had always been the preferred program-

ming language within NASA, but during the mid-
1980s there was considerable interest in whether Ada

should become their "language of choice." The SEL

had a baseline understanding of the FORTRAN de-

velopment environment, but needed to develop a cor-

responding baseline for Ada. A controlled exper-

iment was designed where the same onboard com-

puter simulator would be developed in both Ada and

FORTRAN in order to compare the two languages.

TYPICAL SEL
EFFORT DISTRIBUTION SEL CLEANROOM EFFORT DISTRIBUTION

Other
26%

Design
23%

Other
22% Design

33%

Test
30%

Code
21%

Writing
85%

Reading
15%

• Increased design effort with Cleanroom

• Code writing: SEL baseline: 85%; SEL Cleanroom: 48%

• Code reading: SEL baseline: 15%; SEL Cleanroom: 52%

Test
27%

Code
18%

Reading
52%

Writing
48%

Figure 12. Results of Cleanroom Experiment

SEL-94-005 30

ERRORS (PER K DLOC) PRODUCTIVITY (DLOC PER DAY)

7

4.3

I

I_] SEL Baseline

--'] 1st Cleanroom

B2nd Cleanroom

1_3rd Cleanroom

3.1

//

6
40

26
28

20

Figure 13. Assessing Cleanroom Against Goals and Expectations

in 1984, the GROSS project developed the
operational FORTRAN simulator while a few

months later an independent group, after first

undergoing an intensive training program in the use

of the language, developed the same simulator

(GRODY) using Ada.

The major result from this initial study was an

improved understanding of the requirements used to
specify NASA software. As the Ada simulator was

being designed, it soon became apparent that the

requirements document typically used in flight
dynamics applications contained many functional

design decisions inherent with an assumed use of

FORTRAN. Based upon this finding, requirements

for the simulator were respecified using an object-

oriented approach indicating the use of OOD

technology, data abstraction, and information hiding.

Because of this redesign of the requirements, the SEL

study encompassed both the applicability of Ada in

the FDD and the use of OOD techniques.

The GROSS-GRODY experiment was considered

successful enough to try to use Ada on an actual

mission, so several additional Ada projects were

developed between 1987 and 1990 (see Figure 14).

As the SEL learned about Ada, and the programming
staff became more familiar with the features of the

language, the characteristics of Ada programs began

to change: packages became smaller, use of generics

rose, use of tasking dropped, and there was a greater
use of the Ada typing mechanism (Figure 15).

From these initial Ada studies, the SEL developed a

model of Ada software development as compared to
the traditional FORTRAN baseline:

First-time use of Ada resulted in a 30 percent
increase in costs.

In general, line-by-line, Ada code is more

expensive than FORTRAN code.

Reuse of Ada source code is higher than for

FORTRAN, resulting in a decrease in program
costs for Ada software.

Error rates were similar to error rates in
FORTRAN.

31 SEL-94-005

• One parallel study completed

• 15 Ada production projects

• All projects provide full SEL data

• Numerous studies completed

I SMEXTELS 61K

I POWITS 68K

l-_-s_[-s-_5-K--I
I GSSR1150K 1

I ,OMS_,s,,KI
Iso.o,_,s--_I
I_'s'_'s"_ I
I
I

6 months
training in
OODIAda

/

i UARSTELS 68K I

I FDAS 68K J

I EUVETELS 66K I

I EUVEDSIM 184K I

I GOESIM92K I

I GOADA 170K I

I GENSIM 100K I

Parallel development - Ada and FORTRAN

1984

[3

I I I I I

1986 1988 1990 1992 1994

Active development effort

1996

Figure 14 SEL Ada/OOT Projects

SEL-94-005 32

GENERICS STRONG TYPE
8O%

60%

O

nn"_ 40%

_ 20%
(.9

O%

2.5

_&1.5
8

0.5

| i

87/88 88/89

PACKAGE SIZE

90193

85/86 87/88 88/89 90/93

.O6

.04

_ g .02

0.0

10

E 6

I-- >,

-_ _ 4

p-

ffJ

fJ'i

f,fJ

f,fJ

,f_J

f.fJ

fh'-J

f_rj

f_f'j

fJ'j

fiJ

f_J

f_-j

85/86 87/88 88/89 90193

TASKING

85186

I I---Ir-q r- r
87/88 88/89 90/93

Figure 15. Maturing Use of Ada

Some of the attributes in Figure 15 are not unique to

the Ada language but, rather, represent general OOD
features. Given that, the knowledge obtained from

these studies was packaged as the General Object-
Oriented Software Development (Reference 16) for

application on multiple projects in the environment.

The result has been that FORTRAN programs, too,

have greatly improved in their use of object-oriented

techniques and in the reuse of components from

system to system. Figure 16 shows the shortened
schedules that have resulted from increases in reuse as

object-oriented technology is increasingly employed
on flight dynamics software. FORTRAN has

continued to remain a competitive alternative to Ada

as the technology has evolved.

5.2.5 Studies with Independent
Verification and Validation

(w&v)

Some process changes may not be appropriate

for certain development organizations. The

needs and goals must match the process. The
following evaluation of IV& V was one such

study.

33 SEL-94-005

ADA FORTRAN

30 -
28

25

20

"_,v,
a

10

21

EARLY

(3 projects
1986-1990)

13

--'l"---
RECENT

(3 projects
1991-1994)

EARLY
(4 projects
1985-1990)

16

r
RECENT

(3 projects
1991 - 1994)

Figure 16. Reuse Shortened Project Duration

A study conducted in the mid-! 980s is representative
of the more formal experimentation process that the

SEL typically uses. Much literature had been

published indicating the value of using IV&V during

the development of large software systems, so the

SEL considered adopting the methodology within the

FDD production environment. However, before
decisions were made as to whether or not IV&V

should become part of the standard process, several

experiments were conducted to assess the cost,

benefits, and compatibility of the technology for the

SEL class of systems.

Two experiments were designed to test IV&V on two

major software development efforts. (These studies
are described in detail in Reference 17.) The goal of

using the technology was to drive software error rates
down, while maintaining a relatively cost-effective

development process. Each project was approxi-
mately 65 KSLOC and was typical of previous SEL
tasks. The IV&V tasks had three full-time program-

mers and each project took approximately 16 months

from design through acceptance. The initial expecta-

tions for these projects were

Earlier discovery of defects and increased

quality of the operational software.

Decreases in design flaws, costs of correcting

errors, and system test effort.

• No changes in total defects reported.

The requirements on the IV&V team were

Verify the requirements and design of the

implemented system.

• Perform separate system testing.

Validate consistency of the system to its

requirements.

SEL-94-005 34

Donot debugtheprograms,but reportall
anomalies.

Theresultsof theIV&VstudyareshowninFigure
17andaresummarizedbelow:

Productivitydroppeddueto the increased costs

of performing the IV&V function.

Errors found before system test were generally

higher than the SEL average, but not
excessively so.

IV&V did not significantly affect the overall
error rate of SEL sottware.

IV&V errors cost about the same to fix as errors

in previous SEL projects.

While IV&V has been proposed in environments

where it is critical to achieve a high degree of
reliability, that situation was not apparent in the SEL
environment. For the class of software that the SEL

develops, IV&V was not deemed to be effective in

improving either the reliability or overall cost of

developing flight dynamics software.

O
_.J

09

x,,

t-
O

E

09

2'

MIN

MAX

AVG 2_1

1.6

IV&V

ml
2.2

I
!

U.l_

78"

76"

74"

72"

70"

68"

66"

64"

62

MIN

62.7

AVG

68.4

MAX

76.3
IV&V

74.5

o
O
0o

O
t-
I-

UJ

.

2"

1 "

MIN

MAX

3.3 I
i

AVG

1.4 1

IV&V
m

2.3

! I
i I

1.2

a_ 0.9

0
(._

o 0.6

8

= 0.3

n_

0 0.0

MIN
m

0.68

AVG

1

MAX

1.1

IV&V

1.02

• If errors found are multiplied by a latency factor, IV&V seems more effective.

• If all measures are examined, IV&V may not be appropriate in the environment.

Figure 17. A Look at IV& V Methodology

35 SEL-94-005

5.2.6 Additional Studies

In addition to the studies described, the SEL has

experimented with numerous other technologies

including testing coverage, code-reading techniques,

computer-aided software engineering (CASE)

technology, structured techniques, documentation

approaches, defect causal analysis, reuse approaches,
and functional testing vs. structural testing, as well

as many variations of these methodologies. For a

complete list of SEL reports and publications see the

Annotated Bibliography of SEL Literature (Reference

18).

Probably the most important lesson that has been
derived from the studies is that specific techniques

can help the overall goals of process improvement

when appropriately selected and tailored. However,
the most effective element of the improvement

paradigm is the continuous analysis of the software
business and the continuous expansion of the

understanding of the software process and product.

5.3 Packaging

As the experiments provide additional insight into
the most appropriate techniques, tools, and processes,

results are identified and captured in the form of

"experience packages" which the SEL uses within the
local development organization, and also shares with

outside organizations. The primary products of the

packaging step are standards, tools, and training that
give practical guidance on how to apply the new

techniques in the context of the local process. Here,

the results of the understanding and analysis phases

are captured and packaged for "reuse" by ensuing

projects, so that they become part of the routine
software business. Additionally, the SEL produces

interim packages that are used during experimentation

while tailoring of the subject technology is being
refined for local use.

5.3.1 Interim Packages

Often when the SEL is experimenting with a major

software engineering technology that affects a large

part of the life-cycle, multiple experiments must be

conducted. During these experiments the technology
is tailored iteratively to determine its most effective
use in the local environment. In these cases,

experience from the completed experiments is
distilled to produce a custom-tailored process for the

next experiment. For example, the results of the

initial experiment with the Cleanroom methodology

led to the generation of the Software Engineering

Laboratory Cleanroom Process Model (Reference

19), because the technology radically affected the

project organization and the distribution of life-cycle
activities. This process was applied on subsequent

Cieanroom experiments, and became a standard after

successful use.

Sometimes interim packages fill a gap when a

technology has not matured sufficiently for direct

application locally. For example, when the SEL
could not find an object-oriented approach that

addressed the full life cycle, SEL analysts developed

the General Object-Oriented Development (GOOD)

Methodology (Reference 16) for use on the early Ada

experiments. They also developed an Ada style

guide to augment industry standards. Typically,

interim packages are integrated into the next release
of the baseline standards once their effectiveness is

confirmed on a successful experiment, in some

cases, however, the interim packages are dropped after

experimentation because an acceptable industry-wide
standard becomes available, as was the case with the

Ada Style Guide.

5.3.2 Technology Reports

For each study conducted, the SEL analysts generate

a technology report of results and conclusions. The

reports may be papers for professional conferences,

internal reports, or technical reports. Typically, a

final technology assessment report is produced at the

end of the experimentation phase, summarizing the

SEL's experience with a particular technology. These

reports have two purposes: first, to archive the

experience and, secondly, to share the SEL's

experience with other organizations. These

publications are available to the public at no charge
and are used as the foundation for extending studies

within the SEL. See Reference 18 for a complete list

of SEL-published and SEL-related literature.

In addition to sharing its findings as to the

improvements it has witnessed in flight dynamics
software development and what techniques have or

have not made an impact, the SEL is equally

committed to sharing the process improvement

paradigm it has forged, and all of the lessons it has

learned along the way. Many of these results are

published in software engineering journals and

presented at major international conferences, in
addition, the SEL has packaged its process

improvement experience (methods) in the form of

guidebooks, such as the Software Measurement

SEL-94-005 36

Guidebook, that are designed to be used outside, as
well as inside, the SEL.

To facilitate the sharing of software engineering

experiences among practitioners, the SEL sponsors an

annual Software Engineering Workshop, with paper

sessions, panels, and tutorials, that draws an audience

of over 400 software engineering practitioners from

around the world. The SEL regularly presents its

latest advances in software process improvement

methods and results from its ongoing experiments at
this conference, which has been rated as the best

conference for software practitioners.

5.3.3 Standards, Tools, and Training

Although the technology reports are valuable, the full

value of the process analysis is felt when
modifications and enhancements are made to the

instruments that actually guide the way the

development/maintenance organization carries out its

business. These include standards, tools, and

training classes.

Standards

The SEL development organization uses a standard

set of policies that is updated on a periodic basis to

reflect new experimentation results. It comprises a

set of guidebooks that describe the SEL's baseline

methodology and several guidebooks that define

major tailoring instances of the baseline process.

Baseline Standards:

Manager's Handbook for Software

Development (Reference 20)--presents the

process that the managers use on flight

dynamics systems. This handbook contains the

models, guidelines, and acceptable processes

expected to be applied on each of the

development efforts. It provides specific
guidance for using planning and performance

models to successfully manage software

engineering projects.

Recommended Approach to Software

Development (Reference 21)--presents

guidelines and standards for developing

software in the flight dynamics environment. It

is intended for developers and technical

managers of software development projects. It

describes methods and practices for each phase

of a software development life cycle including

key activities, products, measures, methods,
and tools.

Operational Software Maintenance

Procedures--presents the procedures for correct-

ing, adapting, and enhancing operational flight
dynamics software.

Cost and Schedule Estimation Study Report

(Reference 22)---presents planning models for

cost and schedule estimation and the analysis of

empirical data on which they are based. The

planning parameters are built into planning

spreadsheet tools for use by project managers

and are updated yearly based on ongoing

analysis.

Data Collection Procedures for the SEL

Database (Reference I I)--presents the detailed

procedures and mechanisms for collecting
software measurements. It contains instructions

to the developers regarding the content,
frequency, and format of the data to be

provided.

Tailored Standards:

Ada Developer's Supplement to the

Recommended Approach--presents a collection

of guidelines for programmers and managers

who are developing flight dynamics software in

Ada. It is intended to be used in conjunction

with the Recommended Approach to Software
Development. It provides additional detail on

topics such as reuse and object-oriented analysis
and design.

C Style Guide--presents the recommended

practices and style for programmers using the C

language in the flight dynamics environment.

The guidelines are based on generally

recommended software engineering techniques,
industry resources, and local convention. It

offers preferred solutions to C programming
issues and illustrates through examples of C
code.

Cleanroom Process Model--presents guidelines

for using the Cleanroom methodology in the
flight dynamics environment. It describes the

Cleanroom life-cycle model and the specific
activities performed in each life-cycle phase. It

also addresses pertinent managerial issues and
highlights the key differences and similarities of

37 SEL-94-005

theSELCleanroomprocessandthestandard
developmentapproach.

TheSELhasevolveditsapproach to standards over

the years. The SEL has found that the baseline

process is best presented at a medium level of detail;
it is more important to communicate the rationale

and guidance for applying the methods on projects

rather than providing detailed procedures for them.

This allows the detailed procedures to evolve as

improvements are made and specific project needs
change, without requiring waivers or continual

updates to the formal standards. The SEL typically

updates its baseline standards every 5 years.

The SEL has also discovered that a user-friendly

format is important to creating standards that are

actually used and consulted. The SEL guidebooks

feature graphics to illustrate concepts and are

designed to make information easy to find. They are

also intended to be used primarily as references rather

than one-time reading.

However, most important is the process by which the

SEL gathers the information and ensures that the

standards reflect the actual process. In the early

stages of packaging standards, developers,

maintainers, testers, and managers are interviewed to

gather new and updated information. Facilitated

workshops are then used to develop consensus on the

process content. This information is further validated

by analyzing empirical data. Then a small team of

packagers with excellent communication skills is

tasked with developing the final package.

Tools

An important packaging concept is the infusion of

technology in the form of support tools for use by

project personnel. The SEL developed a project

management tool called the Software Management
Environment (SME). SME provides project

managers access to the SEL data base of previous

project data and access to the baseline set of SEL

process models. Using the SME, a manager can, for

example, compare the growth rate of source programs

or the growth rate of errors, or, using data from
similar projects in the data base, the manager can

predict future activities on the current project. (For
more details on the SME, see Reference 23.) Tools

such as SME help institutionalize the packaging of

the SEL process, because they do not require

operational personnel to know all of the details of

each model in order to use them to gain insight into

their software projects.

The SEL also provides tools to automate parts of the

software measurement process. The SEL developed

an automated tool for developers to use to complete

data collection forms that require simple transcription

(e.g., computer usage and component attributes)

rather than thoughtful completion (e.g., change

reports and effort allocation).

Training

As part of the packaging process, the SEL has

developed a training program, which is outlined in a

detailed training plan (Reference 24). The program

consists of a standard set of courses designed to

provide all of the developers, managers, analysts, and

data base support staff with the information needed to

function effectively in the FDD environment.

Courses cover the SEL software process improvement

concepts, software development methodology,

software management approaches, standards, and

organizational guidelines. This core set of courses

reflects the experimental results, the process

improvement approach and, in general, all of the

experiences of the SEL. These core courses are
continually updated to reflect new and changing

experiments within the SEL.

In addition to the core courses, the SEL staff

provides training in any technology, methodology, or

process that is planned as part of a SEL study when

the technology or process is unfamiliar to the

development teams. For instance, extensive training

was provided in Ada and OOT before any attempt
was made to apply these technologies on

development projects. Other training has included

Cleanroom, inspections, and CASE. If the SEL staff

does not possess the skills or knowledge to teach the
courses, appropriate instructors may be recruited from

elsewhere in the organization or outside vendors may

be contracted to provide the training.

All SEL staff (managers, developers/maintainers,

analysts, and data base support) are required to

participate in the core set of training classes, while
the staff from specific development experiments

attend specialized training addressing the processes

under study.

SEL-94-005 38

Section 6. The SEL Impact

The SEL has invested extensive time, energy, and
resources in its efforts to better understand software

process and its impact on software products. SEL

studies have involved over 120 projects and perhaps
as many software technologies, ranging from

development and management practices (e.g.,

structured technologies), to automation aids (e.g.,
CASE and development tools), to technologies that

affect the full life cycle (e.g., Ada, OOD).

6.1 Cost of Change

The benefits of the process improvement efforts are
well substantiated by looking at the measures of

software cost, error rates, and cycle time--all goals of

the organization as change was being implemented.

Not only has the SEL traced the detailed software

measures throughout its 17-year lifetime, but it also

has tracked quite closely expenditures for process

change efforts. The SEL investment in process

change activities can be divided into three significant
al'cas;

• Project overhead

• Data handling, archiving, and technical support

• Process analysis

The total investment that the SEL has made in the

improvement effort has been approximately

I I percent of the total software development cost in

the FDD. Project overhead represents costs incurred

due to developers attending training (in new

processes), completing data collection forms,

participating in interviews, and providing detailed

additional information requested by the analysts.

This overhead for data collection and process change

is extremely small; it is now nearly impossible to

measure except in the cases of very large process

changes, such as using a new language (longer

training, meetings, etc.). For projects participating
in the routine process improvement efforts, the

impact is approximately 1 percent of the total

software cost. A successful process improvement

program does not require a large perturbation or cost
to the development organization.

Data archiving and repository activities require a

larger investment. Not only must measures be

collected from the developers, but there must be a

smooth process of data quality assurance, archiving,
and reporting. This function of the SEL has cost

approximately 3 percent of the total development

budget. This figure includes purchase and design of
data base management systems and distribution of
SEL literature as well.

The analysis activity has been the most costly of all

the expenditures in the SEL, averaging about

7 percent of development budgets. The responsibili-

ties of the analysts include setting goals, defining

experiments, interpreting measurement data, training

the development/maintenance staff, developing stan-
dards, and tailoring processes for particular needs.

The analysts must provide refined processes to the

development organization along with rationale of

why one process is more appropriate than another.

They must design and then provide any required
training to the development organization. Investment

in analysis is a variable expense, depending on the
experiments and technologies being researched and

the amount of improvement payoff the organization
is seeking at any time.

Over time, the SEL investment in process
improvement has averaged 7 percent in research and

analysis and 3-4 percent in data collection and data

base support combined. While these numbers vary

depending on the complexity of experimentation and

the scope of the technologies being studied at any
time, a local rule of thumb is to maintain data

collection and data base support at no more than half

of the investment in research and analysis.

6.2 Impact on Product

Individual studies often resulted in specific

improvements on the project being studied, but many

experiments resulted in no measurable improvements

or even negative impact on the end product. The
major goals of the SEL from the beginning called for

significant overall improvement in three product
measures:

• Decrease in the defect rate of delivered software.

Decrease in the cost of software to support
similar missions.

39 SEL-94-005

• Decreasein theaveragecycletimetoproduce
missionsupportsoftware.

Theadditionalmeasureofpredictabilityalsohasbeen
an ongoinggoal,but this is a moresubjective
measurethatismoredifficulttoquantify.Detailed
measuresfromtheprojectsallowedtheSELstaffto
observetrendsin thekeymeasuresovertimeandto
analyzespecificchangesbycomparingsimilarclasses
of softwaresupportingsimilarclassesofprojects.In
additionto the informationthatcharacterizesthe
measuresidentifiedabove,additionaldatacollected
onall projectssupportmoreextensivecomparisons
ofotherproductattributes.

To determinethegeneralimpactof thesustained
effortsof the SELasmeasuredagainstits major
goals,comparisonsareroutinelymadebetween
groupsofprojectsdevelopedatdifferenttimes.For
example,between1985and1989(theearlybaseline)
anda groupof similarprojectsdevelopedbetween
1990and1993(thecurrentbaseline).Projectswere
groupedbasedonsize,missioncomplexity,mission
characteristics,language,andplatform.Similartypes
of comparisonshavebeenmadeoverlongerperiods

oftimeaswellascomparisonsmadeonsmallersets
of projectsin varyingclasses.Thegoalof these
analysesistoassesstheimpactof processchangeon
productcharacteristics.This wasmeasuredas
improvementin theendproductin thethreekey
measures:defects,cost,andcycletime.

Theearly baseline comprises eight projects completed
between 1985 and 1989 (see Table 5). These projects

were all ground-based attitude determination and

simulation systems developed on large IBM

mainframe computers ranging in size from 50-150
KSLOC. All of these projects were considered

successful in that they met mission dates and

requirements within acceptable cost, and all of these

projects applied some variation on the standard

software process as part of SEL experimentation.
The current SEL baseline comprises seven projects

completed between 1990-1993 (see Table 6). The

analysis focused on a comparison of defect rates,

cost, cycle time, and levels of reuse. Additionally,
the reuse levels were studied carefully with the full

expectation that there would be a correlation between

higher reuse and lower cost and defect rates.

Table 5. Early SEL Baseline (1985-1989)

PROJECT

(No. & name)

1. GROAGSS

%

REUSE

14

2. COBEAGSS 12

3. GOESAGSS 12

4. UARSAGSS 10

COST*

(Staff mos)

381

RELIABILITY

(ErrorlKDLOC)

4.42

348 5.22

261 5.18

675 2.81

5. GROSIM 18 79 8.91

6. COBSIM 11 39 4.45

7. GOESIM 29 96 1.72

80 2.968. UARSTELS 35

Mission cost = cost of telemetry simulator + cost of AGSS (GRO =
projects 1+5, COBE = 2+6, GOES = 3+7, UARS = 4+8).

SEL-94-005 40

Table 6. Current SEL Baseline (1990-1993)

PROJECT
(No. & name)

1. EUVEAGSS

2. SAMPEX

3. WlNDPOLR

%
REUSE

81

83

18

COST 1

(Staff mos)

155

77

476

4. EUVETELS 96 36

5. SAMPEXTS 95 21 .48

6. POWITS 69 77 2.39

7. TOMSTELS 97 nla 3 .23

8. FASTELS 92 nla 3 .69

REUABILITY
(Error/KDLOC)

1.22

.76

nla 2

.41

1 Mission cost = cost of telemetry simulator + cost of AGSS (GRO =
projects 1+5, COBE = 2+6, GOES = 3+7, UARS = 4+8).

2 Excluded since it used the Cleanroom development methodology
where errors are counted differently.

3 Total mission cost for TOMS and FAST cannot be calculated since

AGSSs are incomplete (they are not included in the cost baseline).

The early baseline projects had a development defect

rate that ranged from a low of 1.7 errors per KSLOC

to a high of 8.9 errors per KSLOC with the average
rate being 4.5 defects per KSLOC. The current

baseline projects had a defect rate ranging from a low

of 0.2 to 2.4 errors per KSLOC with the average

being I error per KSLOC. This reliability measure

showed a decrease in the defect rate of approximately
75 percent over the 8-year period (see Figure 18).

Software cost was also compared between the two
baselines. The mission cost is defined as the total

cost of all the flight dynamics software required to
support the flight project. An examination of the
selected missions from the two baselines revealed

that while the total lines of code produced to support

the specific missions has remained relatively close,

the total mission cost has decreased significantly.

The average mission cost in the early baseline ranged

from a low of 357 staff-months to a high of 755

staff-months with an average of 490 staff-months.

The current baseline projects had costs ranging from a
low of 98 staff-months to a high of 277 staff-months

with an average of 210 staff-months. Figure 19
shows the comparison of the cost data. The

significant decrease in cost can be attributed to

increases in both productivity and code reuse (Figure

20). This comparison shows that the average cost per
mission has decreased by over 50 percent over the

8-year period.

Through the experimentation and emphasis on the

reuse of software in the SEL, detailed data have been
tracked that characterize the trends in the reuse of

software. Although code reuse represents only one
measure of software reuse, it is one of the more

measurable and more easily understood, so the SEL
uses it to measure reuse in its environment. Code

reuse is defined as the total lines of application code
in components (compilable units) that have been

taken in their entirety from a previously completed

system or application library. Commercial off-the-
shelf products and multiple use of a module within

the same system are not included in the
computations.

41 SEL-94-005

1°1
8 I

6

2 u

High = 8.9

Avg -4.5

,

LOW= 1.7

i i

Early
(1985-1989)

High = 2.4

Avg = -1

Low = .2

Current

(1990-1993)

Figure 18. Impact on SEL Products (Reliability)

800--

600 -

O_

400
E
¢:

u)

200 -

r--
!

Early
(1985-1989)

High = 755

Avg = - 490

Low = 357

High = 277

Avg = ~ 210

Low = 98

Current

(1990-1993)

Figure 19. Impact on SEL Products (Cost)

SEL-94-005 42

100
Ada = 90

-I
O)
tY
"E

13.

8O

60

40

FORTRAN = 61

m

Avg = 79

Avg = 20
20

Early
(1985-1989)

Current

(1990-1993)

Figure 20. Impact

In addition to examining the changes over recent
years by comparing projects with similar

characteristics, the long-term trends of reliability were

examined for the full set of projects where accurate

error data were available. Approximately 60 flight
dynamics projects had accurate error data over the

same phases of the life cycle. The error rate data were

taken from these projects over the full lifetime of the

SEL and were fit using a simple linear regression
(shown in Figure 21). The data indicated that error

rates decreased from approximately 7.5 errors per

KSLOC to approximately l error per KSLOC--an

improvement of over 75 percent.

6.3 Impact on Process

The SEL has reviewed in detail the process changes
that have been tried and adopted over the lifetime of

the improvement program. It would be satisfying to
be able to point to a key technology or methodology

change and to state that it had a direct, measurable

link to a specific product improvement. However, it

is difficult to isolate the impact of any one change in

this environment. But the most significant changes

that have been adopted can be identified by

examining the standards, training programs, and

development approaches that today constitute the

on SEL Products (Reuse)

SEL/FDD process. Although specific techniques or
methodologies may have measurable impact on a

class of projects, significant improvement to the

software development process occurs where the

sustained, continuous incorporation of detailed

techniques into higher level organizational processes

effects an overall change in the environment. The

most significant process attributes that distinguish
the current SEL production environment from the

environment of a decade ago include:

Process change has been infused as a standard

business practice.

All standards and training material now contain

elements of the continuous improvement

approach to experimentation that has been

promoted by the SEL.

Measurement is now our way of doing
business.

Measurement is no longer treated as an add-on

to development. The measurement activity is
as common a part of the software standards as

documentation, it is expected, applied, and
effective.

43 SEL-94-005

°

16

14"

12

o 10
g
O

_k
_ 6
a.

o

w

6

o
1976

• _ FORTRAN r-I ADA I

Project Midpoint

Figure 21. Development Error Rates (1977.1994)

Change is now driven by product and

process, not merely process alone.

As the process improvement program has
matured over the years, an equal concern has

developed for product attributes as well as

process attributes. A set of product goals is
always defined before process change is infused.

Because of this, measures of product are as

important as (and probably more important

than) those of process.

Change is now bottom-up.

Although process improvement analysts

originally assumed that they could work

independently from the developers, the years

have brought the realization that change must be

guided by development-project experience•
Direct input from developers as well as

measures extracted from development activities

are key factors in change.

"People-oriented" technologies are empha-
sized rather than automation.

The most effective process changes are those

that leverage the thinking ability of the

developers. These include reviews, inspections,

Cleanroom techniques, management practices,

and independent testing techniques--all of
which are driven by disciplined activities of the

programmers/managers. Automation techniques
have sometimes provided improvement, but

people-driven approaches have had farther

reaching effects.

The improvements in product characteristics and

the changes to the standard process in this envi-
ronment illustrate the impact of the FDD's in-

vestment in the SEL improvement program.

Today, software developers in this organization

are building better software more efficiently

using many techniques and methods considered

experimental only a few years ago. Their

progress has been facilitated throughout by the
SEL, whose focus on defining organizational

goals, expanding domain understanding, and

judiciously applying new technology has en-
abled the FDD to maximize the lessons learned

from local experience.

SEL-94-005 44

Appendix A - Sample SEL Experiment Plan

SEL Representative Study Plan for SOHO TELS

October 11, 1993

Project Description

The Solar and Heliospheric Observatory Telemetry Simulator (SOHOTELS) software development project will

provide simulated telemetry and engineering data for use in testing the SOHO Attitude Ground Support System

(AGSS). SOHOTELS is being developed by a team of four GSFC personnel in Ada on the STL VAX 8820. The

project is reusing design, code, and data files from several previous projects but primarily from the Solar,

Anomalous, and Magnetospheric Particle Explorer Telemetry Simulator (SAMPEXTS).

The SOHOTELS team held a combined preliminary design review (PDR) and critical design review (CDR) in April

1993. In their detailed design document, the SOHOTELS team stated the following goals for the development
effort:

• To maximize reuse of existing code

• Where reuse is not possible, to develop code that will be as reusable as possible

• To make sure performance does not suffer when code is reused

Key Facts

SOHOTELS is being implemented in three builds so that it can be used to generate data for the early phases of the

AGSS (which is a Cleanroom project). Build development and independent acceptance testing are being conducted

in parallel. At present, the test team has finished testing SOHOTELS Build 1. The development team expects to
complete Build 2 and deliver it to the independent test team by the end of the week.

SOHOTELS consists of six subsystems. As of June, the estimated total number of components was 435, of which

396 (91 percent) have currently been completed. Total SLOC for SOHOTELS was estimated at 67.6 KSLOC, with

46.6 KSLOC of code to be reused verbatim and 15.7 KSLOC to be reused with modifications. As of September
13, 1993, there were 65.4 KSLOC in the SOHOTELS system, or 97 percent of the estimated total.

The SOHOTELS task leader is currently re-estimating the size of the system because SOHOTELS will be more

complex than was originally predicted. The new estimates will include SLOC for the schema files that are being
developed.

The phase start dates for SOHOTELS are

September 9, 1992 Requirements Definition

October 3, 1992 Design

May 1, 1993 Code and Unit Test

June 26, 1993 Acceptance Test

May 7, 1993 Cleanup

45 SEL-94-005

Goals of the Study

The study goals for SOHOTELS are

• To validate the SEL's recommended tailoring of the development life cycle for high-reuse Ada projects

• To refine SEL models of high-reuse software development projects in Ada, specifically

- Effort (per DLOC, by phase and by activity)

Schedule (duration for telemetry simulators and by phase)

Errors (number per KSLOC/DLOC)

- Classes of errors (e.g., initialization errors, data errors)

Growth in schedule estimates and size estimates (from initial estimates to completion and from

PDR/CDR to completion)

Approach

The following steps will be taken to accomplish the study goals:

• Understand which of the standard development processes are being followed and which have been tailored for

the SOHOTELS project. Ensure that information is entered into the SEL data base that will allow
SOHOTELS data to be correctly interpreted in light of this tailoring.

• Analyze project/build characteristics, effort and schedule estimates, effort and schedule actuals, and error data

on a monthly basis while development is ongoing.

• At project completion, plot the effort, schedule, error rate, and estimate data. Compare these plots with
current SEL models and with plots from other high-reuse projects in Ada. Compare and contrast the error-

class data with data from FORTRAN projects, from Ada projects with low reuse, and from other high-reuse

Ada projects.

Data Collection

To address these study goals, the following standard set of SEL data for Ada projects will be collected:

• Size, effort, and schedule estimates (Project Estimates Forms)

• Weekly development effort (Personnel Resources Forms)

• Growth data (Component Origination Forms and SEL librarians)

• Change and error data (Change Report Forms and SEL librarians)

SEL-94-005 46

References

1.

.

.

4,

.

.

,

.

.

10.

11.

12.

13.

14.

15.

16.

17.

Basili, V. R., "Quantitative Evaluation of a Software Engineering Methodology," Proceedings of the First

Pan Pacific Computer Conference, Melbourne, Australia, September 1985

Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data," IEEE

Transactions on Software Engineering, November 1984

Basili, V. R., "Software Development: A Paradigm for the Future (Keynote Address)," Proceedings

COMPSAC '89, Orlando, Florida, September 1989

Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals and Environments,"

Proceedings of the Ninth International Conference on Software Engineering. Monterey, California, April
1987

Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented Software

Environments," IEEE Transactions on Software Engineering, Vol. 14, No. 6, June 1988

Basili, V. R., et al., "The Software Engineering Laboratory-An Operational Software Experience Factory,"

Proceedings of the Fourteenth International Conference on Software Engineering, Melbourne, Australia, May
i 992

McGarry, F. E., and M. Thomas, "Top-Down vs. Bottom-Up Process Improvement," IEEE Software, July
1994

Pauik, M., B. Curtis, M. Chrissis, and C. Weber, Capability Maturity Model for Software, Version 1.1,

Software Engineering Institute, Carnegie Mellon University, CMU/SEI-93-TR-24, February 1993

Green, S., The Cleanroom Case Study in the Software Engineering Laboratory." Project Description and

Early Analysis, Software Engineering Laboratory, SEL-90-002, March 1990

Bassman, M., F. McGarry, and R. Pajerski, Software Measurement Guidebook, Software Engineering

Laboratory, SEL-94-003, July 1994

Heller, G. H., J. Valett, and M. Wild, Data Collection Procedures for the SEL Database, Software

Engineering Laboratory, SEL-92-002, March 1992

Stephens, W. P., G. J. Meyers, and L. L. Constantine, "Structured Design," IBM Systems Journal, Vol. 3,

No. 2, 1974

Card, D. N., G. Page, and F. E. McGarry, "Criteria for Software Modularization," Proceedings of the Eighth

International Conference on Software Engineering, London, 1985

Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Testing Strategies," IEEE Transactions on

Software Engineering, December 1987

Basili, V. R., and S. Green, "Software Process Evolution at the SEL," IEEE Software, July 1994

Seidewitz, E., and M. Stark, General Object-Oriented Software Development, Software Engineering

Laboratory, SEL-86-002, August 1986

Page, G., F. E. McGarry, and D. Card, "A Practical Experience with Independent Verification and Validation,"

Proceedings of the Eighth International Computer Software and Applications Conference, IEEE Computer

Society Press, 1984

47 SEL-94-005

18.

19.

20.

21.

22.

23.

24.

Morusiewicz,L., andJ.Valett,Annotated Bibliography of Software Engineering Laboratory Literature,

Software Engineering Laboratory, SEL-82-1206, November 1993

Green, S., Software Engineering Laboratory Cleanroom Process Model, Software Engineering Laboratory,
SEL-91-004, November 199 !

Landis, L., F. E. McGarry, S. Waligora, et al., Manager's Handbook for Software Development (Revision 1),

Software Engineering Laboratory, SEL-84-101, November 1990

Landis, L., S. Waligora, F. E. McGarry, et al., Recommended Approach to Software Development (Revision

3), Software Engineering Laboratory, SEL-81-305, June 1992

Condon, S., M. Regardie, M. Stark, and S. Waligora, Cost and Schedule Estimation Study Report, Software

Engineering Laboratory, SEL-93-002, November 1993

Hendrick, R., D. Kistler, and J. Valett, Software Management Environment (SME) Concepts and Architecture

(Revision 1), Software Engineering Laboratory, SEL-89-103, September 1992

Doland, J. T., R. Pajerski, and S. Waligora, Software Engineering Laboratory Training Plan, Software

Engineering Laboratory, SEL-93-TPI, September 1993

SEL-94-005 48

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are organized into two groups. The

first group is composed of documents issued by the Software Engineering Laboratory (SEL) during its research and

development activities. The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL..ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop, September 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer and C. E. Velez,
November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 3), W. J. Decker, W.

A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory." Relationship Equations, K. Freburger and V. R. Basili, May
1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in the Goddard

Space Flight Center (GSFC) Code 580 Software Design Environment, C. E. Goorevich, A. L. Green, and W. J.

Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November 1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) System Evaluation, W. J.

Decker and C. E. Goorevich, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software Systems, J. F. Cook and F.

E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering, V. R. Basili, 1980

SEL-81-01 I, Evaluating Software Development by Analysis of Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of Medium Scale Software

Systems, G. O. Picasso, December 198 l

SEL-8 I-013, Proceedings of the Sixth Annual Software Engineering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engineering Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et al., February 1982

49 SEL-94-005

SEL-81-110,Evaluation of an Independent Verification and Validation (IV& V) Methodology for Flight Dynamics,

G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora, F. E. McGarry, et al.,
June 1992

SEL-81-305SPI, Ada Developers' Supplement to the Recommended Approach, R. Kester and
L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page, D. N. Card, and F. E.

McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the Software Engineering

Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description (Revision 1), W. A.

Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder, and F. E.

McGarry, October 1983

SEL-82-1206, Annotated Bibliography of Software Engineering Laboratory Literature, L. Morusiewicz and J.

Valet-t, November ! 993

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et al., February
1984

SEL-83-002, Measures and Metrics for Software Development, D. N. Card, F. E. McGarry, G. Page, et al., March
1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revision /), C. W. Doerflinger,
November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Laboratory (SEL), W. W.

Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop, November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis, F. E. McGarry, S. Waligora,

et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et

al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory Ada Development

Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume 111,November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics, R. W. Selby, Jr., and

V. R. Basili, May 1985

SEL-94-005 50

SEL-85-005,Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry, and C. Antle, December
1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development, R. Wood and E. Edwards,
March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutorial, J. Buell and P.

Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November i986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop, December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software Development, S. Perry et
al., March 1987

SEL-87-002, Ada_ Style Guide (Version I. 1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM), W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada_ Design Process and Its Implications: A Case Study, S. Godfrey, C. Brophy, et

al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop, December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L. Esker, and Y. Shi,
November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis, K. Quimby and
L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop, November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and C. Brophy,

September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation�Testing Phase Analysis,

K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard, C. Brophy,
November 1989

SEL-89-OO6, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop, November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users'Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture (Revision I), R. Hendrick, D.

Kistler, and J. Valett, September 1992

5 ! SEL-94-005

SEL-89-301,Software Engineering Laboratory (SEL) Database Organization and User's Guide (Revision 3), L.

Morusiewicz, December 1993

SEL-90-001, Database Access Manager for the Software Engineering Laboratory (DAMSEL) User's Guide, M.

Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-O02, The Cleanroom Case Study in the Software Engineering Laboratory: Project Description and Early

Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering Laboratory (SEL), L. O.
Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Aria (GRODY) Experiment Summary, T. McDermott

and M. Stark, September 1990

SEL-90-O05, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-O06, Proceedings of the Fifteenth Annual Software Engineering Workshop, November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules, W. Decker,

R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report, E. W. Booth and M. E.

Stark, July 199 i

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November ! 991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December 199 !

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revision 1), F. McGarry,

August 1991

SEL-92-O01, Software Management Environment (SME) Installation Guide, D. Kistler and K. Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL) Database, G. Heller, J.

Valet-t, and M. Wild, March 1992

SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop, December 1992

SEL-93-001, Collected Software Engineering Papers: Volume XI, November ! 993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie, M. Stark, et al., November
1993

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop, December 1993

SEL-94-001, Software Management Environment (SME) Components and Algorithms, R. Hendrick, D. Kistler, and

J. Valett, February 1994

SEL-94-002, Software Measurement Guidebook, M. Bassman, F. McGarry, R. Pajerski, July 1994

SEL-94-003, C Style Guide, J. Doland and J. Valett, August 1994

SEL-94-004, Collected Software Engineering Papers: Volume XII, November !994

SEL-94-005, An Overview of the Software Engineering Laboratory, F. McGarry, G. Page, V. Basili, et al.,
December 1994

SEL-94-005 52

SEL-RELATED LITERATURE

10Abd-EI-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for Extraction of Reusable

Components," Proceedings of the IEEE Conference on Software Maintenance-1991 (CSM 91), October 1991

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite Simulation: A Case

Study," Proceedings of the First International Symposium on Ada for the NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Measuring Software Technology," Program Transformation

and Programming Environments. New York: Springer-Verlag, i 984

l Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource Expenditures," Proceedings

of the Fifth International Conference on Software Engineering. New York: IEEE Computer Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development Reusability," Proceedings

of the Eighth Annual National Conference on Ada Technology, March 1990

10Bailey, J. W., and V. R. Basili, "The Software-Cycle Model for Re-Engineering and Reuse," Proceedings of the

ACM Tri-Ada 91 Conference, October 1991

1Basili, V. R., "Models and Metrics for Software Management and Engineering," ASME Advances in Computer

Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New York: IEEE

Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the First Pan-Pacific

Computer Conference, September 1985

7Basili, V. R,, Maintenance = Reuse-Oriented Software Development, University of Maryland, Technical Report

TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland, Technical Report TR-

2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development," IEEE Software, January 1990

lBasili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and Resource Estimation

Problems?," Journal of Systems and Software, February 1981, vol. 2, no. !

9Basili, V. R., G. Caldiera, and G. Cantone, "A Reference Architecture for the Component Factory,"A CM

Transactions on Software Engineering and Methodology, January 1992

10Basili, V., G. Caldiera, F. McGarry, et al., "The Software Engineering Laboratory--An Operational Software

Experience Factory," Proceedings of the Fourteenth International Conference on Software Engineering (ICSE 92),

May 1992

I Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the Software Engineering

Laboratory," Journal of Systems and Software, February 198 l, vol. 2, no. I

12Basili, V., and S. Green, "Software Process Evolution at the SEL," IEEE Software, July 1994

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and Other Variables in the SEL,"

Proceedings of the International Computer Software and Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in the SEL Environment,

University of Maryland, Technical Report TR- 1699, August ! 986

53 SEL-94-005

2Basili,V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical Investigation,"

Communications of the ACM, January 1984, voi. 27, no. l

I Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software Engineering

Laboratory," Proceedings of the ACM SIGMETRICS Symposium/Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Prototype Expert System for Software Engineering

Management," Proceedings of the IEEE/MITRE Expert Systems in Government Symposium, October ! 985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of Maryland, Technical

Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development," Proceedings of the

Workshop on Quantitative Software Models for Reliability, Complexity, and Cost. New York: IEEE Computer

Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals and Environments,"

Proceedings of the 9th International Conference on Software Engineering, March 1987

5Basili, V. R., and H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment," Proceedings of the

Joint Ada Conference, March 1987

5Basili, V. R., and H. D. Rombach, "TAME: Integrating Measurement Into Software Environments," University

of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented Software

Environments," IEEE Transactions on Software Engineering, June 1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A Reuse-Enabling

Software Evolution Environment, University of Maryland, Technical Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards ,4 Comprehensive Framework for Reuse: Model-Based Reuse

Characterization Schemes, University of Maryland, Technical Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, "Support for Comprehensive Reuse," Software Engineering Journal,

September ! 99 I

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Characteristic Software Metric

Set," Proceedings of the Eighth International Conference on Software Engineering. New York: IEEE Computer

Society Press, 1985

5Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies," IEEE Transactions

on Software Engineering, December 1987

3Basili, V. R., and R. W. Seiby, Jr., "Four Applications of a Software Data Collection and Analysis

Methodology," Proceedings of the NATO Advanced Study Institute, August 1985

5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strategies," IEEE Transactions on

Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies in Software Engineering,"

Reliability Engineering and System Safety, January 199 !

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software Engineering," IEEE

Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across FORTRAN Projects,"

IEEE Transactions on Software Engineering, November 1983

SEL-94-005 54

2Basili,V.R.,andD.M.Weiss,A Methodology for Collecting Valid Software Engineering Data, University of

Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data," IEEE

Transactions on Software Engineering, November 1984

l Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives," Proceedings of the

Fifteenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment," Proceedings of the

Software Life Cycle Management Workshop, September 1977

I Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory," Proceedings of the

Second Software Life Cycle Management Workshop, August 1978

I Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics in the Local

Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development," Proceedings of the Third

International Conference on Software Engineering. New York: IEEE Computer Society Press, 1978

Bassman, M. J., F. McGarry, and R. Pajerski, Software Measurement Guidebook, NASA-GB-001-94, Software

Engineering Program, July 1994

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Implementation Concepts,"

Proceedings of Tri-Ada 1991, October 1991

10Booth, E. W., and M. E. Stark, "Software Engineering Laboratory Aria Performance Study--Results and

Implications," Proceedings of the Fourth Annual NASA Ada User's Symposium, April 1992

10Briand ' L. C., and V. R. Basili, "A Classification Procedure for the Effective Management of Changes During

the Maintenance Process," Proceedings of the 1992 IEEE Conference on Software Maintenance (CSM 92),
November 1992

10Briand, L. C., V. R. Basili, and C. J. Hetmanski, "Providing an Empirical Basis for Optimizing the Verification

and Testing Phases of Software Development," Proceedings of the Third IEEE International Symposium on

Software Reliability Engineering (ISSRE 92), October 1992

1 I Briand ' L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with Optimized Set

Reduction for Identifying High Risk Software Components, University of Maryland, Technical Report TR-3048,
March 1993

12Briand, L. C., V. R. Basili, Y. Kim, and D. R. Squire, "A Change Analysis Process to Characterize Software

Maintenance Projects", Proceedings of the International Conference on Software Maintenance, September 1994

9Briand, L. C., V. R. Basili, and W. M. Thomas, A Pattern Recognition Approach for Software Engineering Data

Analysis, University of Maryland, Technical Report TR-2672, May 1991

1I Briand ' L. C., S. Morasca, and V. R. Basili, "Measuring and Assessing Maintainability at the End of High

Level Design," Proceedings of the 1993 IEEE Conference on Software Maintenance (CSM 93), November 1993

12Briand, L., S. Morasca, and V. R. Basili, Defining and Validationg High-Level Design Metrics, University of

Maryland, Technical Report TR-3301, June 1994

I1Briand, L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk Early in Software

Development," Proceedings of the Fifteenth International Conference on Software Engineering (ICSE 93), May
1993

55 SEL-94-005

5Brophy,C.E.,W.W.Agresti,andV.R.Basili,"LessonsLearnedin Use of Ada-Oriented Design Methods,"

Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the Implementation Phase of a

Large Ada Project," Proceedings of the Washington Ada Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer Sciences Corporation,

Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation," Computer Sciences

Corporation, Technical Memorandum, November 1982

3Card, D. N., "A Software Technology Evaluation Program," Annals do XVIII Congresso Nacional de lnformatica,
October 1985

5Card, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," Journal of Systems and Software,

! 987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," Journal of Systems and Software,

June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design Practices," IEEE

Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering View of Flight Dynamics

Analysis System," Parts I and I1, Computer Sciences Corporation, Technical Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules," Computer Sciences

Corporation, Technical Memorandum, June 1984

5Card, D. N., F. E. McGarry, and G. T. Page, "Evaluating Software Engineering Technologies," IEEE

Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization," Proceedings of the Eighth

International Conference on Software Engineering. New York: IEEE Computer Society Press, 1985

IChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering Methodologies,"

Proceedings of the Fifth International Conference on Software Engineering. New York: IEEE Computer Society
Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing Software Prototypes,"

A CM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic Variables,"

Proceedings of the Seventh International Computer Software and Applications Conference. New York: IEEE

Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of Maryland, Technical Report

TR-! 895, August ! 987 (NOTE: 1O0 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada Project," Proceedings of the 1988

Washington Ada Symposium, June i 988

5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical Association of Software Data,

University of Maryland, Technical Report TR- 1848, May 1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Proceedings of the Tenth

International Conference on Software Engineering, April 1988

SEL-94-005 56

I1Li,N. R.,andM. V.Zeikowitz,"An InformationModelfor Usein SoftwareManagementEstimationand
Prediction,"Proceedings of the Second International Conference on Information Knowledge Management,
November 1993

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering, University of Maryland,

Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering Information Bases From Software

Process and Product Specifications," Proceedings of the 22nd Annual Hawaii International Conference on System

Sciences, January 1989

5McGarry, F. E., and W. W. Agresti, "Measuring Ada for Software Development in the Software Engineering

Laboratory (SEL)," Proceedings of the 21st Annual Hawaii International Conference on System Sciences, January
1988

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production Software Environment,"

Proceedings of the Sixth Washington Ada Symposium (WADAS), June 1989

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource Quality on the Software

Development Process and Product," Proceedings of the Hawaiian International Conference on System Sciences,

January 1985

3page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent Verification and Validation,"

Proceedings of the Eighth International Computer Software and Applications Conference, November 1984

12porter, A. A., L. G. Votta, Jr., and V. R. Basili, Comparing Detection Methods for Software Requirements

Inspections." A Replicated Experiment, University of Maryland, Technical Report TR-3327, July 1994

5Ramsey, C. L., and V. R. Basili, "An Evaluation of Expert Systems for Software Engineering Management,"

IEEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage," Proceedings of the Eighth

International Conference on Software Engineering. New York: IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on Maintainability," IEEE

Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software, March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth Journal of Information and

Software Technology, January/February 199 i

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An Industrial Case Study,"

Proceedings From the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis for Generating Customized

SE Information Bases," Proceedings of the 22nd Annual Hawaii International Conference on System Sciences,

January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance Improvement Program:

Lessons Learned in the SEL, University of Maryland, Technical Report TR-2252, May 1989

10Rombach, H. D., B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control: Adding Maintenance

Measurement to the SEL," Journal of Systems and Software, May 1992

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings of the 1987 Conference on

Object-Oriented Programming Systems, Languages, and Applications, October 1987

57 SEL-94-005

5Seidewitz,E.,"GeneralObject-OrientedSoftwareDevelopment: Background and Experience," Proceedings of the

21st Hawaii International Conference on System Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life Cycle Approach," Proceedings

of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X," Ada Letters, March/April
1991

! 0Seidewitz, E., "Object-Oriented Programming With Mixins in Ada," Ada Letters, March/April 1992

12Seidewitz, E., "Genericity versus Inheritance Reconsidered: Self-Reference Using Generics," Proceedings of the

Conference on Object-Oriented Programming Systems, Languages, and Applications, October 1994

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Development Methodology,"

Proceedings of the First International Symposium on Ada for the NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Software in Ada," Proceedings of

the Eighth Washington Ada Symposium, June 1991

8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the Seventh Washington Ada

Symposium, June 1990

1 1Stark, M., "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies," Proceedings of the

Conference on Object-Oriented Programming Systems, Languages, and Applications, September 1993

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse," Proceedings of TRI-Ada

1989, October ! 989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Aria Lifecycle," Proceedings of the Joint Ada

Conference, March 1987

10Straub, P. A., and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Software Specification Process,"

Proceedings of the Sixteenth International Computer Software and Applications Conference (COMPSAC 92),

September 1992

8Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for Ada," Proceedings of the

Tenth International Conference of the Chilean Computer Science Society, July 1990

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Management Cycle Into the TAME

System, University of Maryland, Technical Report TR-2289, July 1989

10Tian, J., A. Porter, and M. V. Zelkowitz, "An Improved Classification Tree Analysis of High Cost Modules

Based Upon an Axiomatic Definition of Complexity," Proceedings of the Third IEEE International Symposium on

Software Reliability Engineering (ISSRE 92), October 1992

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data, Data and Analysis

Center for Software, Special Publication, May ! 981

10Valett, J. D., "Automated Support for Experience-Based Software Management," Proceedings of the Second

Irvine Software Symposium (ISS_92), March 1992

5Valett, J. D., and F. E. McGarry, "A Summary of Software Measurement Experiences in the Soft'ware Engineering

Laboratory," Proceedings of the 21st Annual Hawaii International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of Changes: Some Data From

the Software Engineering Laboratory," IEEE Transactions on Software Engineering, February 1985

SEL-94-005 58

5Wu, L., V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems," Proceedings of the

Joint Ada Conference, March 1987

I Zelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Proceedings of the Twelfth

Conference on the Interface of Statistics and Computer Science. New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science Research," Empirical

Foundations for Computer and Information Science (Proceedings), November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Proceedings of the 26th Annual

Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of Systems and Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With Syntax Editors,"

Information and Software Technology, April 1990

59 SEL-94-005

NOTES:

IThis article also appears m SEL-82-004 Collected Software Engineering Papers." Volume I, July 1982.

2This article also appears m SEL-83-003 Collected Software Engineering Papers: Volume 1I, November 1983.

3This article also appears m SEL-85-003 Collected Software Engineering Papers: Volume III, November 1985.

4This article also appears in SEL-86-004 Collected Software Engineering Papers." Volume IV, November 1986.

5This article also appears m SEL-87-009 Collected Software Engineering Papers: Volume V, November 1987.

6This article also appears in SEL-88-002 Collected Software Engmeermg Papers: Volume VI, November 1988.

7This article also appears n SEL-89-006, Collected Software Engmeermg Papers: Volume VII, November 1989.

8This article also appears m SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990.

9This article also appears m SEL-91-005, Collected Software Engineering Papers: Volume IX, November 199 !.

10This article also appears in SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992.

11This article also appears in SEL-93-001, Collected Software Engineering Papers: Volume XI, November 1993.

12This article also appears in SEL-94-004, Collected Software Engineering Papers: VolumeXll, November 1994.

SEL-94-005 60

REPORT DOCUMENTATION PAGE FormApprovedOMB No, 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite

1204, Arlington, VA 22202-4302, and to the Office of Manao_ement and Budget, Paperwork Reduction Proiect 10704-01881, Washin_lton, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1994

4. TITLE AND SUBTITLE

An Overview of the Software Engineering Laboratory

6. AUTHOR(S)

Software Engineering Laboratory

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Branch

Code 552

Goddard Space Flight Center

Greenbelt, Maryland

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NASA Aeronautics and Space Administration

Washington, D.C. 20546-0001

11. SUPPLEMENTARY NOTES

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

552

#_) _t I J • ,
._, .J ./ *'i f ()

8. PERFORMING ORGANIZATION
REPORT NUMBER

SEL-94-005

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CR-189410

12a. DISTRIBUTION/AVAILABIMTY STATEMENT

Unclassified-Unlimited

Subject Category: 61

Report is available from the NASA Center for AeroSpace Information,

800 Elkridge Landing Road, Linthicum Heights r MD 21090; (301) 621-0390.

13. ABSTRACT (Ma_>dmum200 words)

12b. DISTRIBUTION CODE

This report describes the background and structure of the SEL organization, the SEL process improvement approach, and

its experimentation and data collection process. Results of some sample SEL studies are included. It includes a discussion of

the overall implication of trends observed over 17 years of process improvement efforts and looks at the return on investment

based on a comparison of total investment in process improvement with the measurable improvements seen in the

organization's software product.

14. SUBJECT TERMS

Software Engineering, Software Measurement, Data Collection

17. SECURITY CLASSIRCATION 18. SECURITY CLASSIRCATION
OF REPORT OF THIS PAGE

I
!Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIRCATION
OF ABSTRACT

Unclassified

15. NUMBER_)_ PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)

